
Version 1.5 Page 1 of 83

An Implementer’s Guide to the Identity
Selector Interoperability Profile V1.5

July 2008

Authors

Microsoft Corporation

Ping Identity Corporation

Copyright Notice

(c) 2006-2008 Microsoft Corporation. All rights reserved.

Abstract

This document is intended for developers and architects who wish to design identity

systems and applications that interoperate using the Identity Selector Interoperability

Profile V1.5 built upon the mechanisms described in [WS-Trust 1.2], [WS-Trust 1.3], [WS-

SecurityPolicy 1.1], and [WS-SecurityPolicy 1.2]. An Identity Selector and the associated

identity system components using the Information Card Model allow users to manage their

Digital Identities from different Identity Providers, and employ them in various contexts to

access services.

The mechanisms described in this document elaborate on the Identity Selector

Interoperability Profile V1.5. The interactions between a conforming Identity Selector and a

Relying Party or an Identity Provider are illustrated, and the message exchanges with an

Identity Provider are described in detail. This document is intended to be read alongside the

document entitled “Identity Selector Interoperability Profile V1.5” [ISIP] which specifies the

normative profile of the definitions and behaviors referenced by this document.

Additionally, “A Guide to Using the Identity Selector Interoperability Profile V1.5 within Web

Applications and Browsers” [ISIP Web Guide] describes how Information Cards can be used

within applications hosted on web sites and accessed through web browsers.

STATUS

The information presented in this document is informative; the normative definitions can be

found in [ISIP].

NOTE:

The Identity Selector Interoperability Profile V1.5 was used to implement the Windows

CardSpace software in Microsoft .NET Framework 3.5 Service Pack 1.

http://www.microsoft.com/

Version 1.5 Page 2 of 83

Table of Contents

1. Introduction

1.1. Goals of the Information Card Model

1.2. Information Card Usage Model

1.2.1. Web Service Interactions

1.2.2. Web Site Interactions

1.3. An Example

2. Using This Document

3. Relying Party

3.1. Expressing Token Requirements of Relying Party

3.1.1. Issuer of Tokens

3.1.2. Type of Proof Key in Issued Tokens

3.1.3. Claims in Issued Tokens

3.2. Expressing Privacy Policy of Relying Party

3.3. Employing Relying Party STSs

3.4. Example of Relying Party Security Policy

3.5. Identifying the Relying Party

3.5.1. Characteristics of Certificate Identifying the Organization

3.6. Retrieving Relying Party Policy

3.7. Submitting Tokens to Relying Party

4. Identity Provider

4.1. Information Card

4.1.1. Information Card Format

4.1.1.1. Expressing Logical Name of Token Issuer

4.1.1.2. Expressing Token Service Endpoints and Authentication Mechanisms

4.1.1.3. Expressing Token Types Offered

4.1.1.4. Expressing Claim Types Offered

4.1.1.5. Requiring Token Scope Information

4.1.1.6. Expressing Privacy Policy Location

4.1.1.7. Prohibiting Use at Relying Parties Not Identified by a Cryptographically
Protected Identity

4.1.2. Issuing Information Cards

4.2. Identity Provider Policy

4.2.1. Require Information Card Provisioning

4.2.2. Secure Policy Metadata

4.3. Token Request and Response

4.3.1. Information Card Reference

4.3.2. Claims and Other Token Parameters

4.3.3. Token Scope

4.3.4. Client Pseudonym

4.3.5. Proof Key for Issued Token

4.3.6. Display Token

Version 1.5 Page 3 of 83

5. Message Exchanges with Identity Provider

5.1. Retrieving Identity Provider Policy

5.1.1. WSDL and Security Policy

5.1.1.1. Using Transport Binding

5.1.1.2. Using Symmetric Binding

5.1.2. Message Exchange

5.2. Authenticating with Username and Password

5.2.1. Credential Format

5.2.2. Security Policy

5.2.3. Message Exchange

5.3. Authenticating with KerberosV5 Service Ticket

5.3.1. Credential Format

5.3.2. Security Policy

5.3.3. Message Exchange

5.4. Authenticating with X.509v3 Certificate

5.4.1. Credential Format

5.4.2. Security Policy

5.4.3. Message Exchange

5.5. Authenticating with Self-issued Token

5.5.1. Credential Format

5.5.2. Security Policy

5.5.3. Message Exchange

6. Faults

6.1. Relying Party

6.2. Identity Provider

6.2.1. Identity Provider Custom Error Messages

7. Information Cards Transfer Format

8. Simple Identity Provider Profile

8.1. Self-Issued Information Card

8.2. Self-Issued Token Characteristics

8.3. Self-Issued Token Encryption

8.4. Self-Issued Token Signing Key

8.5. Claim Types

8.6. The PPID Claim

8.6.1. Relying Party Identifier and Relying Party PPID Seed

8.6.1.1. Algorithm Change to Increase PPID and Signing Key Stability

8.6.2. PPID

8.6.3. Friendly Identifier

9. Relying Parties without Certificates

10. Using WS-SecurityPolicy 1.2 and WS-Trust 1.3

11. References

Appendix A – Glossary

Appendix B – Self-Issued Tokens

Version 1.5 Page 4 of 83

Appendix C – Windows CardSpace .NET Framework 3.5 Service Pack 1 Constraints

1. Introduction

Identity is fundamental to enabling interactions in everyday life. The same is true of the

digital world as well where Digital Identity is fundamental to enabling digital interactions in

an interconnected online world. Digital Identities are used to authenticate parties to each

other in the online world. Knowing, with a high degree of assurance, who one is interacting

with is a key element in deciding whether to trust the other party and for what.

A Digital Identity of a Subject is defined as a set of Claims asserted by a Claims Authority

about the Subject (see glossary of terms in Appendix A). Claims are communicated in

signed Security Tokens, and may represent identifying and other personal information about

a Subject. Users will typically have a portfolio of Digital Identities analogous to the multiple

forms of identities they employ in the physical world – drivers‟ licenses, other government-

issued identity cards, credit cards, company affiliation cards such as frequent flyer cards,

etc. The use and acceptance of a Digital Identity in any given context is usually an

intersection of a user‟s choice to offer an identity based on its appropriateness to the

context, and the recipient‟s choice to accept that identity based on its requirements and

willingness to trust the Claims Authority that is making the claims inherent in the Digital

Identity. Hence it is important to create a system that allows users to employ Digital

Identities issued by different authorities in contexts of their choosing through a consistent

and understandable user interface. The system should be capable of handling all forms of

Digital Identities regardless of the underlying identity technologies at play.

The Information Card Model allows users to manage a portfolio of Digital Identities from

various authorities, and employ them in various contexts where they are accepted to access

online services. The model embodies the patterns and messages of WS-Trust, but can be

implemented using lightweight protocols like HTTP POST as well as the SOAP-based WS

protocols. A crucial application for this model is to establish a framework in which

consumers of user identities can ask for exactly what they need, and providers of identities

can furnish the needed identity with intermediation by the user when appropriate.

In the Information Card Model, Digital Identities are encoded as Security Tokens containing

claims about a user made by an Identity Provider (IP) and presented to a Relying Party

(RP). The Security Token presented may be used for authenticating the user and/or

providing authorized access to services offered by the Relying Party. Furthermore, relying

parties can express their identity and other security requirements in the form of Security

Policy that can be queried by client applications through which the user desires to access

the services offered by the Relying Party.

It should be noted that just as claims about users may be asserted by a third party Identity

Provider, some claims could be self-asserted by users acting as their own Identity Providers.

Ultimately, it is up to the Relying Party to determine if it is willing to trust and accept it. It

turns out that such self-issued identities are commonly used and find applicability in many

everyday online interactions. For example, when users visit an online retailer site and must

create new user accounts in order to purchase merchandise from that site, they would

typically fill in one or more online forms divulging personal information to the site. In these

circumstances, the online retailer site is usually willing to accept the users‟ self asserted

personal information to register and create accounts for them. Usually, what is important for

the Relying Party in such scenarios is that a user can prove on a repeat visit that she is the

same user that registered.

Version 1.5 Page 5 of 83

To help users organize their various Digital Identities, the Information Card Model

introduces the notion of an “Information Card” which is an embodiment of a Digital Identity

that the user can visualize, examine and reason about in user interfaces. Each Information

Card corresponds to an Identity Provider and represents a Digital Identity for the user

issued by that Identity Provider. Multiple Digital Identities for a user from the same Identity

Provider would be represented by different Information Cards. Users may have a collection

of Information Cards representing the various Digital Identities they have, some self-issued

and others issued by 3rd party Identity Providers. Note that an Information Card itself is not

the Security Token that is used to carry identity claims in Web service protocols; rather it is

an artifact that represents the token issuance relationship of the user with the

corresponding Identity Provider. An actual Security Token with specific claims can be

requested from the Identity Provider when needed based on the Information Card. In other

words, Information Cards help to provide a concrete visualization of a user‟s identities on a

user interface in digital interactions much like the cards one carries inside one‟s wallet/purse

for everyday physical interactions.

Further, to help users select from their various Digital Identities in different contexts, the

Information Card Model introduces the notion of an Identity Selector as an architectural

component in the Identity Metasystem. It is the processing engine that determines which of

a user‟s Information Cards are capable of meeting a Relying Party‟s requirements. It also

provides a consistent user interface for users to visualize, examine and reason about their

Digital Identities, and select one for use. When a client application (i.e., the user agent)

needs a suitable Security Token to satisfy the security requirements of a target service it

interacts with, it invokes the Identity Selector component to obtain the appropriate Security

Token representing the user identity. The Identity Selector puts users in control of the use

of their identities by applications in various contexts.

1.1. Goals of the Information Card Model

An Identity Selector can use Information Cards from any Identity Provider of the user‟s

choice, and offer those identities under user control to applications acting as user agents. It

interoperates with the Identity Provider for an Information Card using open protocols. The

primary goal of this Guide is to document and describe how a Relying Party expresses its

identity requirements to a client such that the Identity Selector can process them, and how

the Identity Selector interacts with Identity Providers to obtain Security Tokens that fulfill

those requirements. We hope that this will enable any Identity Provider or Relying Party to

interoperate using the Information Card Model for the purpose of identity-based Web

service interactions.

The following list identifies the key goals of the Information Card Model:

 Enable use of Digital Identity in the form of Security Tokens carrying claims as

authentication and/or authorization data using Web service mechanisms.

 Allow users flexibility in their choice of Digital Identities they wish to employ, and put

users squarely in control of the use of their identities in digital interactions.

 Support cryptographically verifiable but human-friendly identification of the

recipients of a user‟s Digital Identities.

 Enable interoperability with Identity Providers and relying parties using open

protocols to allow an identity ecosystem to thrive.

 Remain agnostic of specific Security Token types and claim types so as to effectively

be a conduit for flow of identity information between Identity Providers and relying

parties under user control.

Version 1.5 Page 6 of 83

 Safeguard user privacy by providing privacy-friendly identity mechanisms to help

thwart tracking of users‟ online behavior and unsolicited collusion.

 Provide a simple Identity Provider to allow users to construct and employ self-issued

identities in Web service interactions when acceptable.

1.2. Information Card Usage Model

This section describes the overall model for using Information Cards to exchange Digital

Identity in the form of Security Tokens for authentication, authorization or any other

purpose. The WS-SecurityPolicy, WS-MetadataExchange and WS-Trust Web service

specifications, along with [ISIP Web Guide], define mechanisms for expressing security

requirements and obtaining Security Tokens to satisfy those requirements. The Identity

Selector Interoperability Profile builds on that foundation by describing how those

mechanisms are employed to enable rich expression of identity requirements and fulfillment

of those requirements. The model promotes interoperability between Identity Providers and

relying parties under user control.

The model described here can be used with:

 A dedicated rich client application accessing a Web service as the Relying Party, or

 A generic Browser client accessing a Web site as the Relying Party.

For the first case, a Web service can use the policy assertions defined in WS-SecurityPolicy

to express its Security Token requirements and the necessary set of claims they must carry

in order for it to accept incoming requests. A rich client application can query and learn the

Web service policy using [WS-MetadataExchange] prior to requesting service. For the

second case, a Web site can use the mechanism defined in [ISIP Web Guide] using HTML

tags to express its Security Token requirements. A Browser client acting as the user agent

can learn the Web site policy by interpreting the HTML content of the queried page.

In either case, the client evaluates the Relying Party policy and acquires the necessary

Security Token(s) from suitable Identity Providers using the token issuance mechanism

described in WS-Trust. This aspect of the model is the same for either case, and is the

primary focus of this document. The tokens are then presented to the Relying Party using

the mechanisms defined in [WS-Security] or [ISIP Web Guide] depending on whether the

Relying Party is a Web service or Web site, respectively.

Version 1.5 Page 7 of 83

Application

Client

Application

Service

Authentication/

Authorization

Security Token Service

Self-issued

Identity Provider

Security Token Service

Managed

Identity Provider N

Security Token Service

Managed

Identity Provider 1

Security Token Service

…

Relying PartyIdentity Provider Service Requester

82

1

9

3

7

5
6

5

6

5

6

Identity

Selector4

Application

Client

Application

Service

Authentication/

Authorization

Security Token Service

Self-issued

Identity Provider

Security Token Service

Managed

Identity Provider N

Security Token Service

Managed

Identity Provider 1

Security Token Service

…

Relying PartyIdentity Provider Service Requester

82

1

9

3

7

5
6

5

6

5

6

Identity

Selector4

Figure 1. Information Card interaction model

Figure 1 above illustrates the Information Card interaction model for using Digital Identity in

the form of Security Tokens in a simple canonical scenario. The model consists of a Service

Requester in the form of a client application running on a client system, a Relying Party in

the form of a Web service (or Web site) that the user wishes to access through the client

application, and one or more Identity Providers that can issue Security Tokens. The Relying

Party may optionally maintain profile information about a user, but that is distinct from the

Digital Identity employed by the user to gain access to the service.

The Relying Party may optionally delegate to an associated service, shown as the

“Authentication/Authorization Security Token Service” in the figure, to authenticate and/or

authorize a user‟s identity. Note that this is purely a service deployment choice and not a

required configuration. The application service could just as well perform those functions

itself instead of delegating. If that were the case, then the extra hop represented by steps 3

and 7 would be absent in Figure 1. Such choices in service deployment can be suitably

reflected in the Relying Party policy causing the appropriate WS-Trust exchanges to occur

between the Service Requester and the intermediate Security Token Services employed by

the Relying Party before the final request reaches the application service.

The user, interacting through the Identity Selector on the Service Requester, may have

identities issued by one or more Identity Providers. Each such Digital Identity of the user is

represented by an Information Card that the Identity Selector can process. An Information

Card endows the Identity Selector with the ability to request and obtain Security Tokens

from the corresponding Identity Provider when the user selects that Digital Identity for use

in a given interaction context.

Each Identity Provider, shown as “Managed Identity Provider 1 through N” in the figure,

runs a Security Token Service (STS) to which a requester can submit Security Token

requests. The Security Token Service can issue Security Tokens containing the requested

claims after the requester has provided suitable proof of authentication as required by the

Identity Provider‟s Security Policy. Note that a simple Identity Provider, shown as the “Self-

Version 1.5 Page 8 of 83

issued Identity Provider” in the figure, may be used in the Information Card Model to allow

users to issue self-issued Security Tokens.

Let us assume that the user has previously obtained one or more Information Cards from

various Identity Providers which are available to the Identity Selector running on the

Service Requester. The sequence of actions that occurs in the model depicted in Figure 1

where the user wants to access the Relying Party service through the client application is as

follows:

1. The client application obtains the Security Policy of the Relying Party using the

mechanisms described in [WS-MetadataExchange] or [ISIP Web Guide] depending

on whether the Relying Party is a Web service or Web site, respectively. The Relying

Party policy requires that the requester present a Security Token issued by either an

Identity Provider or the delegate Authentication/Authorization STS.

2. The client application requests the Identity Selector to produce a Security Token that

can satisfy the Relying Party policy.

3. (OPTIONAL) If a token is required from the delegate STS, then the Identity Selector

obtains the Security Policy of the delegate STS using metadata exchange. This step

is iteratively repeated for as many intermediate STS as is necessitated by the

Relying Party deployment configuration. At the end, the client has a policy that

requires a Security Token with a specified set of claims issued by a specific Identity

Provider (could be the Self-issued Identity Provider).

4. The Identity Selector displays the matching Information Cards which can satisfy the

Relying Party policy, and the user selects and approves one for use.

5. The Identity Selector requests and obtains the Security Policy of the Identity Provider

STS corresponding to the selected Information Card using metadata exchange. The

Security Policy specifies the Security Binding to use for requesting tokens.

6. The Information Card specifies the required credential to use for authenticating the

user to the Identity Provider. The Identity Selector authenticates the user to the

Identity Provider STS using the credential specified in the Information Card, and

requests a Security Token with the desired claims as specified by the Relying Party

using the mechanisms defined by WS-Trust.

7. (OPTIONAL) The Identity Selector presents the token to the delegate Authentication/

Authorization STS, and requests a Security Token for the Relying Party service using

the mechanisms of WS-Trust.

8. The Identity Selector returns the requested Security Token to the client application.

9. The client application presents the token obtained in step 6 (or optionally step 7) to

the Relying Party service to gain access.

1.2.1. Web Service Interactions

When the Relying Party is a Web service, Figure 2 below shows the interactions between the

participating entities and the sequence of message flows between them. For convenience,

the optional Authentication/Authorization STS is omitted from the interactions shown, and

the Relying Party application service is assumed to process the Security Token presented by

the Service Requester by itself.

Version 1.5 Page 9 of 83

Sign-on and obtain an information card (out-of-band)

2. Request security policy

3. Return security policy

1. User requests service

from relying party

7. Request security policy

8. Return security policy

9. Request security token with required claims

10. Return security token

11. Send application request; Attach security

token to application request message

12. Return application response

4. Evaluate security policy of relying

party and find candidate information

cards that can satisfy its policy

5. Present candidate

information cards to user

6. User selects information

card (and thus IP) to use

13. User gains access to

service from relying party

Service Requester

(Application Client

with Identity Selector)

User

Relying Party

(Web service)

Identity Provider

Sign-on and obtain an information card (out-of-band)

2. Request security policy

3. Return security policy

1. User requests service

from relying party

7. Request security policy

8. Return security policy

9. Request security token with required claims

10. Return security token

11. Send application request; Attach security

token to application request message

12. Return application response

4. Evaluate security policy of relying

party and find candidate information

cards that can satisfy its policy

5. Present candidate

information cards to user

6. User selects information

card (and thus IP) to use

13. User gains access to

service from relying party

Service Requester

(Application Client

with Identity Selector)

User

Relying Party

(Web service)

Identity Provider

Figure 2. Message sequence for Web service interactions

Note that the above sequence describes the interactions when a dedicated client application

is used to access a Web service. The interaction sequence illustrated in this figure provides

the framework for the details of the Information Card Model described in the remainder of

this document.

1.2.2. Web Site Interactions

When the Relying Party is a Web site, Figure 3 below shows the interactions between the

participating entities and the sequence of message flows between them. As before, the

optional Authentication/Authorization STS is omitted from the interactions shown, and the

Relying Party Web site is assumed to directly process the Security Token presented by the

Service Requester.

Version 1.5 Page 10 of 83

Sign-on and obtain an information card (out-of-band)

2. HTTP GET pageUrl

3. HTTP redirect to loginUrl

1. User requests access

to service from relying party

9. Request security policy

10. Return security policy

11. Request security token with required claims

12. Return security token

6. Evaluate policy of relying party in OBJECT

tag and find candidate information cards that

can satisfy its policy

7. Present candidate

information cards to user

8. User selects information

card (and thus IP) to use

17. User gains access to

service from relying party

Service Requester

(Browser with

Identity Selector)

User

Relying Party (Web site)

Identity Provider
Web page Login page

4. HTTPS GET loginUrl

5. HTML login page with OBJECT tag

15. HTTP GET pageUrl

16. HTML page

13. HTTPS POST loginUrl with security token

14. HTTP redirect to pageUrl with cookie

Sign-on and obtain an information card (out-of-band)

2. HTTP GET pageUrl

3. HTTP redirect to loginUrl

1. User requests access

to service from relying party

9. Request security policy

10. Return security policy

11. Request security token with required claims

12. Return security token

6. Evaluate policy of relying party in OBJECT

tag and find candidate information cards that

can satisfy its policy

7. Present candidate

information cards to user

8. User selects information

card (and thus IP) to use

17. User gains access to

service from relying party

Service Requester

(Browser with

Identity Selector)

User

Relying Party (Web site)

Identity Provider
Web page Login page

4. HTTPS GET loginUrl

5. HTML login page with OBJECT tag

15. HTTP GET pageUrl

16. HTML page

13. HTTPS POST loginUrl with security token

14. HTTP redirect to pageUrl with cookie

Figure 3. Message sequence for Web site interactions

This interaction model, using a lightweight HTTP mechanism for accessing the Relying Party

with a Browser client, is described in more detail in [ISIP Web Guide].

1.3. An Example

Let us illustrate the Information Card based interactions described in the previous section

with a real world example using a Web service and a dedicated rich client. John Kane is an

employee of Fabrikam, Inc. Fabrikam has a partnership with Blue Yonder Airlines for making

travel arrangements for its employees and purchasing tickets at specially discounted prices.

Fabrikam has issued all its frequent traveler employees, including John, Information Cards

to prove that they are employees of Fabrikam. It also runs a STS at the address

http://fabrikam.com/employee/sts which issues Security Tokens for the issued Information

Cards. Fabrikam has also given those employees smart cards to use as strong two-factor

credentials for authenticating to the employee STS when using their Information Cards on

the road.

Employees of Fabrikam use a special travel reservation smart client application for

requesting travel arrangements from Blue Yonder Airlines which runs a travel portal and

airline reservation service at the address http://www.blueyonderairlines.com/travel. When

John runs the smart client reservation application on his personal computer to make travel

reservations with Blue Yonder Airlines, the following sequence of interactions occur:

 The travel reservation client application obtains the Security Policy of the airline

reservation service at http://www.blueyonderairlines.com/travel using metadata

Version 1.5 Page 11 of 83

exchange. The travel portal service policy requires that the client application submit

a Security Token issued by the user‟s employer STS, namely the Fabrikam STS at

http://fabrikam.com/employee/sts (There is a trust relationship between the airline

reservation service and each of the partner company STS with which it federates).

 The travel reservation client application requests the Identity Selector component on

John‟s personal computer to produce a Security Token that can satisfy the

reservation service policy. The Identity Selector displays the matching Information

Cards, namely the Information Card given to John by his employer, and John selects

and approves it for use.

 The Identity Selector on John‟s personal computer then obtains the Security Policy of

John‟s employee STS at http://fabrikam.com/employee/sts using metadata exchange

to determine the Security Binding to use when requesting the Security Token.

 The employer issued Information Card selected by John specifies the required

authentication mechanism to be X.509 certificate based, and the credential selector

in the Information Card provides a hint for John to insert his smart card given to him

by his employer. The Identity Selector prompts John to insert his corporate smart

card into the reader and enter his PIN.

 The Identity Selector now authenticates to the Fabrikam employee STS at

http://fabrikam.com/employee/sts using the X.509 certificate from John‟s smart

card, and requests a Security Token with the required claims specified by the airline

reservation service. Upon successful authentication, it receives the Security Token.

 The Identity Selector then hands the requested Security Token to the travel

reservation application running on John‟s personal computer.

 The travel reservation application running on John‟s personal computer then presents

the token obtained from the Identity Selector and presents it to the travel portal

service along with proof-of-possession to gain access.

 Now, John can look at possible travel choices and request reservations.

Although the above example describes a dedicated client application used to access a Web

service, the model can also be used in a lightweight manner with a Browser client accessing

a Web site using the HTTP protocol as shown in Section 1.2.2. This lightweight usage is

described in [ISIP Web Guide].

2. Using This Document

In this document we will cover what you need to know and the steps you need to take to

support Information Cards either as a Relying Party or as an Identity Provider. Following is a

brief navigational summary of the parts of this document that are pertinent for each role.

In order to support Information Cards, a Relying Party using Web-services based application

will need to:

 Support identification of its organization using X.509 certificates with logotypes,

whenever possible, to allow end users to clearly identify who they are dealing with. It

is highly recommended that “extended validation” certificates be employed for this

purpose. This is described in Section 3.1.

 Support expressing its security requirements, including its Security Token

requirements, using the policy assertions described in WS-SecurityPolicy. This is

described in Section 3.1.1.

Version 1.5 Page 12 of 83

 Support the retrieval of its service metadata, including its WSDL and policy, using

the mechanism described in [WS-MetadataExchange]. This is briefly described in

Section 3.5.

 Support the submission of Security Tokens bound to application messages by a

Service Requester using the mechanisms specified in WS-SecurityPolicy. This is

briefly described in Section 3.6.

 Optionally, when appropriate, support self-issued Security Tokens and the strong

cryptographic keys in such tokens as user credentials instead of passwords. This is

described in Appendix B.

In order to support Information Cards, an Identity Provider will need to:

 Support issuing Information Cards to its users using the format and mechanism

described in Sections 4.1.

 Support the mechanism described in WS-Trust, using the RequestSecurityToken and

RequestSecurityTokenResponse protocol messages, for issuing Security Tokens

based on an Information Card. An Identity Provider can, however, issue any type of

Security Token that is acceptable to a Relying Party since the Identity Selector on

the Service Requester is token agnostic. This is described in Section 4, and the

message exchanges are detailed in Section 5.

 Although not required, it is highly recommended that the Identity Provider should

support the specific extensions to WS-Trust protocol elements defined by the

Information Card Model to support the Identity Metasystem goals of user control and

privacy. This is described in Sections 4.3.

 Support expressing the security requirements of its Security Token Service using the

policy assertions described in WS-SecurityPolicy, and support the retrieval of that

policy using the mechanism described in [WS-MetadataExchange]. This is described

in Section 5.1.

 Support one or more of the credential mechanisms described in Section 5 to allow

users to authenticate to the Security Token Service. When appropriate, instead of

passwords, support self-issued Security Tokens and the strong cryptographic keys in

such tokens as user credentials. This is described in Section 5.5.

For brevity of the examples used for illustration in this document, we list here in Table 1 the

XML namespaces and corresponding prefixes used throughout the document.

Table 1: Prefixes and XML namespaces used in this document

Prefix XML Namespace Reference(s)

S http://www.w3.org/2003/05/soap-envelope SOAP 1.2 [SOAP 1.2]

xs http://www.w3.org/2001/XMLSchema XML Schema [Part 1,

2]

ds http://www.w3.org/2000/09/xmldsig# XML Digital Signatures

ic http://schemas.xmlsoap.org/ws/2005/05/identity Identity Selector

Interoperability Profile

[ISIP]

ic07 http://schemas.xmlsoap.org/ws/2007/01/identity Namespace for

http://www.w3.org/2003/05/soap-envelope
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2000/09/xmldsig
http://schemas.xmlsoap.org/ws/2005/05/identity

Version 1.5 Page 13 of 83

additional elements

also defined by [ISIP]

saml urn:oasis:names:tc:SAML:1.0:assertion SAML 1.0

wsid http://schemas.xmlsoap.org/ws/2006/02/addressingidentity Identity Extension for

Web Services

Addressing

[Addressing-Ext]

wsx http://schemas.xmlsoap.org/ws/2004/09/mex WS-

MetadataExchange

[WS-

MetadataExchange]

wsa http://www.w3.org/2005/08/addressing WS-Addressing [WS-

Addressing]

wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-

wss-wssecurity-utility-1.0.xsd

WS-SecurityUtility

wsse http://docs.oasis-open.org/wss/2004/01/oasis-200401-

wss-wssecurity-secext-1.0.xsd

Web Services Security

1.0 [WS-Security]

wsse11 http://docs.oasis-open.org/wss/oasis-wsswssecurity-secext-

1.1.xsd

Web Services Security

1.1

wst12 http://schemas.xmlsoap.org/ws/2005/02/trust WS-Trust 1.2 [WS-

Trust 1.2]

wst13 http://docs.oasis-open.org/ws-sx/ws-trust/200512 WS-Trust 1.3 [WS-

Trust 1.3]

wst May refer to either

http://schemas.xmlsoap.org/ws/2005/02/trust or

http://docs.oasis-open.org/ws-sx/ws-trust/200512 since

both may be used

WS-Trust

wsp http://schemas.xmlsoap.org/ws/2004/09/policy WS-Policy [WS-Policy]

sp11 http://schemas.xmlsoap.org/ws/2005/07/securitypolicy WS-SecurityPolicy 1.1

[WS-SecurityPolicy

1.1]

sp12 http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702 WS-SecurityPolicy 1.2

[WS-SecurityPolicy

1.2]

sp May refer to either

http://schemas.xmlsoap.org/ws/2005/07/securitypolicy or

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702

since both may be used

WS-SecurityPolicy

http://schemas.xmlsoap.org/ws/2006/02/addressingidentity
http://schemas.xmlsoap.org/ws/2004/09/mex
http://www.w3.org/2005/08/addressing
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
http://docs.oasis-open.org/wss/oasis-wsswssecurity-secext-1.1.xsd
http://docs.oasis-open.org/wss/oasis-wsswssecurity-secext-1.1.xsd
http://schemas.xmlsoap.org/ws/2005/02/trust
http://docs.oasis-open.org/ws-sx/ws-trust/200512
http://schemas.xmlsoap.org/ws/2005/02/trust
http://docs.oasis-open.org/ws-sx/ws-trust/200512
http://schemas.xmlsoap.org/ws/2004/09/policy
http://schemas.xmlsoap.org/ws/2005/07/securitypolicy
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702
http://schemas.xmlsoap.org/ws/2005/07/securitypolicy
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702

Version 1.5 Page 14 of 83

3. Relying Party

This section describes the general framework used by a Relying Party Web service for

specifying and conveying its Security Token requirements as well as its own identity to a

Service Requester. The Relying Party Web service may be an application service or a

delegate STS supporting the application service as shown in Figure 1. For brevity, the

Relying Party STS shown as “Authentication/Authorization STS” in the figure will be referred

to as “RP/STS” in the remainder of this section.

At a high-level, a Relying Party service or an RP/STS specifies its Security Policy, including

its token requirements and Security Binding, as described in WS-SecurityPolicy. A Service

Requester will obtain the Security Policy from the Relying Party using the mechanisms

specified in [WS-MetadataExchange] before sending any application request messages. The

Service Requester must obtain the required Security Tokens from the appropriate issuing

authorities to satisfy the Relying Party policy, and submit each token along with proof-of-

possession by binding the tokens to application messages.

3.1. Expressing Token Requirements of Relying Party

This section describes the mechanisms available to a Relying Party for specifying its Security

Token (i.e. user identity) requirements as a prerequisite to providing service. The policy

assertions and parameters described here are those already defined in WS-SecurityPolicy or

extended by [ISIP] where needed.

A Relying Party specifies its Security Token requirements as part of its Security Policy using

the primitives and assertions described in WS-SecurityPolicy. The primary construct in the

Security Policy of the Relying Party used to specify the type and claims content of Security

Tokens issued by an Identity Provider is the <sp:IssuedToken> policy assertion. The basic

form of the issued token policy assertion as defined in WS-SecurityPolicy is as follows.

<sp:IssuedToken sp:Usage="xs:anyURI" sp:IncludeToken="xs:anyURI" ...>

 <sp:Issuer>

 ...

 </sp:Issuer>

 <sp:RequestSecurityTokenTemplate>

 ...

 </sp:RequestSecurityTokenTemplate>

 <wsp:Policy>

 ...

 </wsp:Policy>

 ...

</sp:IssuedToken>

The following subsections describe the use of special parameters and policy assertion

elements added by [ISIP] as extensions to the sp:IssuedToken policy assertion that convey

additional instructions to the Service Requester.

A Relying Party may specify the type of required token by using the wst:TokenType element

within its issued token policy assertion. The URI for a token type may be defined in token-

specific profiles. The following example illustrates the use of this element in the Relying

Party‟s Security Policy to request a SAML 1.1 token.

Example:

<sp:IssuedToken>

 <sp:RequestSecurityTokenTemplate>

 <wst:TokenType>

 urn:oasis:names:tc:SAML:1.0:assertion

Version 1.5 Page 15 of 83

 </wst:TokenType>

 </sp:RequestSecurityTokenTemplate>

</sp:IssuedToken>

An Information Card Identity Selector is token type agnostic, and acts as a conduit for any

token type requested by a Relying Party and/or issued by an Identity Provider. If no token

type is specified, the token types advertised by the user‟s Information Cards will not be

used as criteria for choosing which cards can be used at the Relying Party.

3.1.1. Issuer of Tokens

The sp:IssuedToken/sp:Issuer element in an issued token policy specifies the issuer for

the required token. More specifically, it should contain the endpoint reference of an Identity

Provider STS that can issue the required token.

A Relying Party can specify the issuer for a required token in the following ways:

 Indicate a specific issuer by specifying the issuer‟s endpoint as the value of the

sp:Issuer/wsa:Address element.

 Indicate that the issuer is unspecified by omitting the sp:Issuer element, which

typically means that the Service Requester should determine the appropriate issuer

for the required token with help from the user if necessary.

The ability to leave the issuer unspecified is useful in circumstances where the Relying Party

cannot publicize, for confidentiality reasons, which Identity Providers it is willing to accept.

For example, an enterprise that federates identities with other business partners may have

a need to keep confidential who its business partners are. The Relying Party, however,

makes the final determination of whether a presented token is acceptable.

When requiring a specific issuer, a Relying Party can specify that it will accept self-issued

Security Tokens from the user by using the special URI below (defined in [ISIP]).

http://schemas.xmlsoap.org/ws/2005/05/identity/issuer/self

Following is an example of using this URI within an issued token policy to specify that self-

issued tokens will be accepted.

Example:

<sp:IssuedToken ...>

 <sp:Issuer>

 <wsa:Address>

 http://schemas.xmlsoap.org/ws/2005/05/identity/issuer/self

 </wsa:Address>

 </sp:Issuer>

 ...

</sp:IssuedToken>

When requiring a specific token issuer in policy, a Relying Party must specify the location of

issuer metadata using the mechanism defined in [WS-Addressing] for embedding metadata

within an endpoint reference. The following example shows a token policy with a specific

issuer and its corresponding metadata location.

Example:

<sp:IssuedToken ...>

 <sp:Issuer>

 <wsa:Address>http://contoso.com/sts</wsa:Address>

 <wsa:Metadata>

 <wsx:Metadata>

 <wsx:MetadataSection

Version 1.5 Page 16 of 83

 Dialect="http://schemas.xmlsoap.org/ws/2004/09/mex">

 <wsx:MetadataReference>

 <wsa:Address>https://contoso.com/sts/mex</wsa:Address>

 </wsx:MetadataReference>

 </wsx:MetadataSection>

 </wsx:Metadata>

 </wsa:Metadata>

 </sp:Issuer>

 ...

</sp:IssuedToken>

In many circumstances, it is useful for a Relying Party to specify the issuer of a token as a

logical name instead of an actual network address where the token is issued. A client can

then resolve the logical name to an appropriate token issuing endpoint by means at its

disposal. A Relying Party can specify a logical name of the issuer, instead of its endpoint, as

the value of the sp:Issuer/wsa:Address element in policy. The Identity Selector selects

Information Cards matching the logical issuer name to present to the user. One example of

the use of a logical name for an issuer is the use of the URI

http://schemas.xmlsoap.org/ws/2005/05/identity/issuer/self to request a self-

issued Information Card.

3.1.2. Type of Proof Key in Issued Tokens

A Relying Party can explicitly request the use of an asymmetric or symmetric key in the

required token by using the wst:KeyType element within its issued token policy assertion.

The key type URIs are defined in WS-Trust. The following example illustrates the use of this

element in Security Policy to request an asymmetric key in the issued token.

Example:

<sp:IssuedToken>

 <sp:RequestSecurityTokenTemplate>

 <wst:KeyType>

 http://schemas.xmlsoap.org/ws/2005/02/trust/PublicKey

 </wst:KeyType>

 </sp:RequestSecurityTokenTemplate>

</sp:IssuedToken>

The default behavior of an Identity Selector is to request an asymmetric key token from the

Identity Provider if no explicit key type is specified by the Relying Party.

The choice of using symmetric or asymmetric key tokens can depend on a variety of

technical and business factors. For example, symmetric keys provide token processing

speed and efficiency, whereas asymmetric keys may be needed to meet legal business

requirements of non-repudiation of submitted tokens.

It should be noted that the default behavior of an Identity Selector is different for the

special case of Browser based client interactions with a Web site, in which case it requests

“bearer” tokens (see Section 4.3.5). Since a Browser can only submit a token to a Web site

passively over HTTP without any proof-of-possession, bearer tokens with no proof keys are

appropriate.

3.1.3. Claims in Issued Tokens

A Relying Party can ask for one or more claims in the token issued by an Identity Provider.

If any required claims are missing in the token submitted, it can accept or reject that token

at its own discretion.

Version 1.5 Page 17 of 83

The claims requirement of a Relying Party can be expressed in its token policy by using the

optional wst:Claims parameter defined in WS-Trust. The ic:ClaimType element defined in

[ISIP] can be used, as a child of the wst:Claims element, to specify an individual claim type

required. Further, each required claim can be specified as being mandatory or optional.

Multiple ic:ClaimType elements can be included to specify multiple claim types required.

When using the Information Card Model, the wst:Dialect attribute on the wst:Claims

element should have the URI value shown below (defined in [ISIP]). This value indicates

that the claim type elements are to be processed as per the semantics of the Information

Card Model.

http://schemas.xmlsoap.org/ws/2005/05/identity

Following is an example of using this element within an issued token policy to require two

claim types, where one claim type is optional.

Example:

<sp:IssuedToken ...>

 ...

 <sp:RequestSecurityTokenTemplate>

 ...

 <wst:Claims

 wst:Dialect="http://schemas.xmlsoap.org/ws/2005/05/identity">

 <ic:ClaimType

 Uri="http://.../ws/2005/05/identity/claims/givenname"/>

 <ic:ClaimType

 Uri="http://.../ws/2005/05/identity/claims/surname"

 Optional="true" />

 </wst:Claims>

 </sp:RequestSecurityTokenTemplate>

 ...

</sp:IssuedToken>

[ISIP] defines a small set of claim types for common personal information about users that

is supported for self-issued tokens. These claim types may be used by relying parties to

specify their claim requirements. They may also be used by other 3rd party Identity

Providers for the Security Tokens they issue. Other claim types may be defined and used by

relying parties and Identity Providers for other specialized needs. The Information Card

Model and profile place no constraints on the claim types that can be used in tokens.

3.2. Expressing Privacy Policy of Relying Party

A Relying Party Web service should publish its “Privacy Policy” for its clients to retrieve and

possibly display in user interfaces. Users may decide to release tokens and interact further

with that service based on its Privacy Policy. No assumptions are made regarding the format

and content of the Privacy Policy. The Identity Selector system does not attempt to

programmatically parse, interpret or act on the Privacy Policy.

A Web service can express the location of its privacy statement using the optional policy

assertion element ic:PrivacyNotice defined in [ISIP]. The XML attribute Version allows

expressing changes in the version of the privacy statement when its content changes.

Following is an example of using this policy element to express the location of the privacy

statement of a Web service.

Example:

<wsp:Policy>

 ...

<ic:PrivacyNotice Version="1">

Version 1.5 Page 18 of 83

 http://www.contoso.com/privacynotice

</ic:PrivacyNotice>

<sp:SymmetricBinding>

 ...

</sp:SymmetricBinding>

 ...

</wsp:Policy>

An Identity Selector implementing the V1.5 profile can only accept the privacy statement

location as an URL as illustrated above.

When a client system can only render the privacy statement document in a limited number

of document formats (media types), it may use the HTTP request-header field “Accept” in its

HTTP GET request to specify the media-types it can accept. For example, the following

request-header specifies that the client will accept the Privacy Policy only as a plain text or

a HTML document.

Accept: text/plain, text/html

Similarly, if a client system wants to obtain the privacy statement in a specific language, it

may use the HTTP request-header field “Accept-Language” in its HTTP GET request to

specify the languages it is willing to accept. For example, the following request-header

specifies that the client will accept the Privacy Policy only in Danish.

Accept-Language: da

3.3. Employing Relying Party STSs

The steps involved in an Identity Selector interacting with an RP website, an RP/STS, and an

IP/STS are illustrated in Figure 4.

Version 1.5 Page 19 of 83

Figure 4. Identity Selector interacting with an RP website, an RP/STS, and an IP/STS

These steps are:

1. The user goes to the RP website.

2. Token requirements are returned via the x-informationCard object tag.

3. The Identity Selector queries for policy from the RP/STS.

4. Policy is returned from the RP/STS.

5. The user selects a card that matches the RP/STS policy.

6. The Identity Selector makes a request for a token from the IP/STS (RST).

7. The token is returned from the IP/STS to the Identity Selector (RSTR).

8. Using the token from the IP/STS, the Identity Selector makes a request for a token

from the RP/STS (RST).

9. A token is returned to the Identity Selector (RSTR).

10. The Identity Selector returns the token to the browser, which posts it to the site.

RP Site RP/STS IP/STS

Identity Selector

Relying Party

66

33

22

44

55

77

11

1100

88
99

Version 1.5 Page 20 of 83

Figure 5. Policy Chain

The policy chain can be longer than just a single RP/STS, as shown in Figure 5. In this

example, the RP Site would specify the requirements of the token it requires from RP/STS

1; this would include required claims, STS endpoint URL, and STS Metadata Exchange Policy

(MEX) endpoint. Similarly, RP/STS 1; would specify the requirements of the token it

requires from RP/STS 2. RP/STS 2 would then specify the requirements for the token it

needs. The details about how to contact the IP/STS are be retrieved from the card the user

selects. However, RP/STS 2 may also specify an issuer, in which case only cards from the

specified issuer may be selected by the user.

Of course, the more STSs in the chain, the more processing time is required to request all of

the tokens. This delay may be noticed as the Identity Selector starts (chasing the policy

chain) and when it closes (retrieving the tokens).

If an Identity Selector maintains a history of the Relying Parties where a user uses a card,

the identity tracked should be that of the actual Relying Party – not the RP/STSs that it may

employ. That way, even if multiple RPs use a common RP/STS, different card history

entries are maintained for use of the card at the different RPs.

3.4. Example of Relying Party Security Policy

This section shows a complete example of policy for a Relying Party service containing

policy assertions defined in WS-SecurityPolicy and in [ISIP]. The first policy example is for a

service endpoint and applies to all message interactions with that endpoint. It specifies the

SOAP message security and token requirements of the service. The second policy example

is for individual messages and can be attached to specific messages sent to the service

endpoint. It specifies the message integrity and confidentiality requirements.

Example:

Policy attached to the service endpoint:

<wsp:Policy

 wsu:Id="ServiceEndpoint_policy"

 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-utility-1.0.xsd"

 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

 xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust"

 xmlns:ic="http://schemas.xmlsoap.org/ws/2005/05/identity">

 <wsp:ExactlyOne>

 <wsp:All>

 <ic:PrivacyNotice Version="2">

 http://www.contoso.com/privacypolicy

 </ic:PrivacyNotice>

 <sp:SymmetricBinding>

 <wsp:Policy>

RP Site RP/STS 1 IP/STS RP/STS 2

Version 1.5 Page 21 of 83

 <sp:ProtectionToken>

 <wsp:Policy>

 <sp:X509Token

 sp:IncludeToken=".../ws/2005/07/securitypolicy/IncludeToken/Never">

 <wsp:Policy>

 <sp:RequireThumbprintReference />

 <sp:WssX509V3Token10 />

 </wsp:Policy>

 </sp:X509Token>

 </wsp:Policy>

 </sp:ProtectionToken>

 <sp:AlgorithmSuite>

 <wsp:Policy>

 <sp:Basic256 />

 </wsp:Policy>

 </sp:AlgorithmSuite>

 <sp:Layout>

 <wsp:Policy>

 <sp:Strict />

 </wsp:Policy>

 </sp:Layout>

 <sp:IncludeTimestamp />

 <sp:OnlySignEntireHeadersAndBody />

 </wsp:Policy>

 </sp:SymmetricBinding>

 <sp:EndorsingSupportingTokens>

 <wsp:Policy>

 <sp:IssuedToken sp:IncludeToken=".../IncludeToken/AlwaysToRecipient">

 <sp:Issuer>

 <wsa:Address>

 http://schemas.xmlsoap.org/ws/2005/05/identity/issuer/self

 </wsa:Address>

 </sp:Issuer>

 <sp:RequestSecurityTokenTemplate>

 <wst:TokenType>

 urn:oasis:names:tc:SAML:1.0:assertion

 </wst:TokenType>

 <wst:KeyType>

 http://schemas.xmlsoap.org/ws/2005/02/trust/SymmetricKey

 </wst:KeyType>

 <wst:Claims

 wst:Dialect="http://schemas.xmlsoap.org/ws/2005/05/identity">

 <ic:ClaimType

 Uri="http://... /identity/claims/privatepersonalidentifier" />

 </wst:Claims

 </sp:RequestSecurityTokenTemplate>

 </sp:IssuedToken>

 </wsp:Policy>

 </sp:EndorsingSupportingTokens>

 </wsp:All>

 </wsp:ExactlyOne>

</wsp:Policy>

Policy attached to individual messages sent to the service endpoint:

<wsp:Policy

 wsu:Id="Service_message_policy"

Version 1.5 Page 22 of 83

 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-utility-1.0.xsd"

 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

 xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">

 <wsp:ExactlyOne>

 <wsp:All>

 <sp:SignedParts>

 <sp:Body />

 <sp:Header Name="To" Namespace="http://.../2005/08/addressing" />

 <sp:Header Name="From" Namespace="http://.../2005/08/addressing" />

 <sp:Header Name="FaultTo" Namespace="http://.../2005/08/addressing" />

 <sp:Header Name="ReplyTo" Namespace="http://.../2005/08/addressing" />

 <sp:Header Name="MessageID" Namespace="http://.../2005/08/addressing" />

 <sp:Header Name="RelatesTo" Namespace="http://.../2005/08/addressing" />

 <sp:Header Name="Action" Namespace="http://.../2005/08/addressing" />

 </sp:SignedParts>

 <sp:EncryptedParts>

 <sp:Body />

 </sp:EncryptedParts>

 </wsp:All>

 </wsp:ExactlyOne>

</wsp:Policy>

3.5. Identifying the Relying Party

One of the driving requirements of the Information Card Model is to support

cryptographically verifiable but human-friendly identification of the recipient of a user‟s

Digital Identities. When a Relying Party requires that a user‟s Digital Identity be submitted

in the form of a Security Token containing claims, the user needs to have a reliable means

to identify the Relying Party to make a trust decision of whether to release her Digital

Identity or not. This requires that the identity of the Relying Party be conveyed to the

Service Requester in a form that can be authenticated by the requester, yet presented to

the user in a human-friendly manner for making trust decisions. Furthermore, it is

important that the conveyed identity of the Relying Party be that of the organization or

enterprise represented by the Relying Party Web service. Users make a conscious choice of

whether or not to trust the actual organization or enterprise behind the Web service with

their Digital Identities, not a specific service end-point.

Given the motivation described above, we recommend using “extended validation” X.509

certificates (as opposed to regular SSL server certificates) to identify the organization. In

these certificates, the organization‟s name and location information (if present) in the

subject identifier should be marked with the extended validation quality (i.e., asserted with

high assurance). Furthermore, we recommend using certificates with extended validation

logotypes for the issuer organization and subject organization [RFC 3709] for the purpose of

visually identifying the Relying Party. Much of the information contained in digital

certificates is appropriate and effective for machine processing; however, this information is

not suitable for a corresponding human recognition and trust process. The use of extended

validation logotypes is aimed at simplifying the human interpretation of the certificate

content and helping the user‟s decision to trust the subject organization.

The next question is how is this organizational identity conveyed to the Service Requester

and surfaced to the user? Endpoint references, defined in WS-Addressing, convey the

information needed to reference a Web service endpoint. The Identity Selector

Interoperability Profile uses the Identity element defined in [Addressing-Ext] to add

Version 1.5 Page 23 of 83

identity information to an endpoint reference. This identity extension for an endpoint

reference should be used to convey the identity of the organization behind that endpoint.

Here is an example of an endpoint reference augmented with identity data in the form of an

X.509 certificate:

<wsa:EndpointReference>

 <wsa:Address>http://wh1.fabrikam123.com/Purchasing</wsa:Address>

 <wsid:Identity>

 <ds:KeyInfo>

 <ds:X509Data>

 <ds:X509Certificate>...</ds:X509Certificate>

 </ds:X509Data>

 </ds:KeyInfo>

 </wsid:Identity>

</wsa:EndpointReference>

Security Tokens returned by an Identity Selector to the Service Requester application for

submission to the target service will typically be encrypted to the key in the organizational

certificate conveyed in the endpoint reference. Since the user evaluates and approves the

identity of the organization in the endpoint reference as the recipient of his Digital Identity,

encrypting the tokens this way guarantees that only the entity approved by the user can

examine the content of the Security Tokens.

Other forms of organizational identity and reputations for organizations are possible, and

can easily be accommodated in the Information Card Model in the future.

3.5.1. Characteristics of Certificate Identifying the Organization

Although ordinary SSL server certificates can be employed for identifying the Relying Party

organization, it is HIGHLY RECOMMENDED that extended validation certificates be used as

described above. Regardless of which type of X.509 certificate is used, it should satisfy the

following characteristics [RFC2459]:

 The “Subject” field of the certificate must contain a non-empty X.500 distinguished

name (DN) as the subject name. Further, the “CN” and “O” attributes must be

present in the subject name. Optionally, zero or more of the location related

attributes “L”, “S” and “C” may also be present.

 The “Key Usage” field of the certificate must assert at least the “digitalSignature”

and “keyEncipherment” usage bits.

 If the certificate is also to be used for SSL based server authentication, then the

“Extended Key Usage” field of the certificate must also assert at least the “Server

Authentication” usage OID (1.3.6.1.5.5.7.3.1).

An Identity Selector uses the subject name in the certificate presented by an RP to

construct the RP-specific private personal identifier (PPID) claim for the user in issued

Security Tokens (see [ISIP] for description of PPID). The RP-specific PPID value is computed

as a function of the required organization name (“O”) and any optional location (“L”, “S” and

“C”) attributes present in the subject name.

3.6. Retrieving Relying Party Policy

The Security Policy of a Relying Party specifies its message security and token

requirements. A Service Requester can obtain the policy of the Relying Party using the

mechanism specified in [WS-MetadataExchange].

Version 1.5 Page 24 of 83

It is highly recommended that the retrieval of the Relying Party policy should be a secured

exchange using a secure transport mechanism like TLS/SSL to prevent tampering or

security downgrade attacks. Identity Selectors implementing the V1.5 profile require that

the policy metadata of a Relying Party must be available at an endpoint using the HTTPS

transport.

The following example illustrates the request and response messages for retrieving policy

metadata.

Metadata request from Service Requester to Relying Party:

<S:Envelope ...>

 <S:Header>

 <wsa:Action S:mustUnderstand="1">

 http://schemas.xmlsoap.org/ws/2004/09/transfer/Get

 </wsa:Action>

 <wsa:MessageID>

 urn:uuid:ab9e1c77-0cea-4f2f-a586-78c15536137d

 </wsa:MessageID>

 <wsa:To S:mustUnderstand="1">

 https://www.contoso.com/sts/mex

 </wsa:To>

 <wsa:ReplyTo>

 <wsa:Address>

 http://www.w3.org/2005/08/addressing/anonymous

 </wsa:Address>

 </wsa:ReplyTo>

 </S:Header>

 <S:Body />

</S:Envelope>

Metadata response from Relying Party to Service Requester:

<S:Envelope ...>

 <S:Header>

 <wsa:Action S:mustUnderstand="1">

 http://schemas.xmlsoap.org/ws/2004/09/transfer/GetResponse

 </wsa:Action>

 <wsa:RelatesTo>

 uuid:ab9e1c77-0cea-4f2f-a586-78c15536137d

 </wsa:RelatesTo>

 </S:Header>

 <S:Body>

 <wsx:Metadata>

 <wsx:MetadataSection

 Dialect="http://schemas.xmlsoap.org/wsdl/" Identifier="...">

 ...

 </wsx:MetadataSection>

 <wsx:MetadataSection

 Dialect="http://schemas.xmlsoap.org/wsdl/" Identifier="...">

 ...

 </wsx:MetadataSection>

 ...

 </wsx:Metadata>

 </S:Body>

</S:Envelope>

Note that since all metadata was requested, several metadata sections may be returned in

the response each containing a specific type of metadata. For example, service contract

Version 1.5 Page 25 of 83

definitions, policy declarations, and bindings including attached policy may each be returned

in a separate metadata section.

3.7. Submitting Tokens to Relying Party

A Service Requester can submit the Security Token it obtains from an Identity Selector to a

Relying Party using any application specific mechanism. However, when using the web

services SOAP security mechanism defined in [WS-Security], it should bind the token to

application messages using the mechanisms described in WS-SecurityPolicy. Those

mechanisms specify the security header layout for ordering of SOAP message elements, and

how signatures must be used to provide proof-of-possession of a token using the proof key

carried inside the Security Token.

4. Identity Provider

This section describes the general framework for Identity Providers to issue Information

Cards, and for an Identity Selector to request Security Tokens.

At a high-level, an Information Card carries the Identity Provider‟s issuance capabilities

including the types of tokens and claim types it can issue, the location of its token services,

and the authentication credential needed for requesting Security Tokens. It therefore

contains enough information to allow an Identity Selector to match it with a Relying Party‟s

requirements. Once a match occurs and the user selects an Information Card, the Identity

Selector requests and obtains the appropriate Security Token from the Identity Provider

using the mechanisms described in WS-Trust.

An Identity Provider runs one or more instances of Security Token Services as shown in

Figure 1 to handle Security Token requests. For brevity, the Identity Provider STS will be

referred to as “IP/STS” in the remainder of this section.

4.1. Information Card

An Information Card symbolically represents the Digital Identity of a user issued by an

Identity Provider. As a concrete artifact, it is a container of identity metadata. Furthermore,

being a concrete entity, it is portable and can be carried by a user to be used from any

computer or device through which Web services are accessed.

4.1.1. Information Card Format

An Information Card is concretely represented as a XML document that can be issued by an

Identity Provider and stored by a user on any storage device of their choice. It does not

inherently contain any confidential data.

The XML schema for an Information Card is described in [ISIP] and is represented by the

ic:InformationCard element. The xml:lang attribute can be used, either at the root

element or at any of the child elements, to specify the language in which the content of

those elements in the Information Card has been localized.

The following example illustrates an Information Card issued by “Contoso, Inc.” that

supports the SAML token type, two claim types, requires that the Relying Party identity be

conveyed in token requests, and requires authentication based on username/password

when requesting tokens. Note that whitespace (newline and space character) is included in

the example shown only to improve readability; they must not be present in an actual

implementation.

Example:

<InformationCard

Version 1.5 Page 26 of 83

 xmlns="http://schemas.xmlsoap.org/ws/2005/05/identity"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust"

 xml:lang="en-us">

 <InformationCardReference>

 <CardId>http://contoso.com/CardId/d795621fa01d454285f9</CardId>

 <CardVersion>1</CardVersion>

 </InformationCardReference>

 <CardName>Contoso Membership Card</CardName>

 <CardImage MimeType="image/gif"> ... </CardImage>

 <Issuer>http://contoso.com</Issuer>

 <TimeIssued>2003-08-24T00:30:05Z</TimeIssued>

 <TimeExpires>2008-08-24T00:30:05Z</TimeExpires>

 <TokenServiceList>

 <TokenService>

 <wsa:EndpointReference>

 <wsa:Address>http://contoso.com/sts</wsa:Address>

 <wsa:Metadata>

 <wsx:Metadata>

 <wsx:MetadataSection

 Dialect="http://schemas.xmlsoap.org/ws/2004/09/mex">

 <wsx:MetadataReference>

 <wsa:Address>https://contoso.com/sts/mex</wsa:Address>

 </wsx:MetadataReference>

 </wsx:MetadataSection>

 </wsx:Metadata>

 </wsa:Metadata>

 </wsa:EndpointReference>

 <UserCredential>

 <UsernamePasswordCredential>

 <Username>Zoe</Username>

 </UsernamePasswordCredential>

 </UserCredential>

 </TokenService>

 </TokenServiceList>

 <SupportedTokenTypeList>

 <wst:TokenType>urn:oasis:names:tc:SAML:1.0:assertion</wst:TokenType>

 </SupportedTokenTypeList>

 <SupportedClaimTypeList>

 <SupportedClaimType Uri=".../ws/2005/05/identity/claims/givenname">

 <DisplayTag>Given Name</DisplayTag>

 </SupportedClaimType>

 <SupportedClaimType Uri=".../ws/2005/05/identity/claims/surname">

 <DisplayTag>Last Name</DisplayTag>

 </SupportedClaimType>

 </SupportedClaimTypeList>

 <RequireAppliesTo />

 <PrivacyNotice Version="1">

 http://contoso.com/privacynotice

 </PrivacyNotice>

</InformationCard>

The subset of schema elements in an Information Card used to express the token issuance

capabilities and requirements of the Identity Provider are briefly discussed below.

Version 1.5 Page 27 of 83

4.1.1.1. Expressing Logical Name of Token Issuer

An Identity Provider can express an URI as a logical name for itself acting as the token

issuer using the ic:Issuer element in an Information Card. When a Relying Party specifies

a logical name as the issuer of a required token (in the sp:Issuer/wsa:Address field of its

issued token policy), the Identity Selector selects Information Cards with a matching

ic:Issuer element value. The following example illustrates the use of this element.

Example:

<ic:Issuer>http://contoso.com</ic:Issuer>

4.1.1.2. Expressing Token Service Endpoints and Authentication Mechanisms

An Identity Provider can publish a prioritized list of endpoints for its IP/STS and a descriptor

of the corresponding user credential required for each endpoint using the element

ic:TokenServiceList in an Information Card. For each endpoint, the required credential

type implicitly determines the authentication mechanism to be used. Each credential

descriptor is personalized for the user to allow the Identity Selector to automatically locate

the credential once the user has selected an Information Card.

Further, each IP/STS endpoint reference in the Information Card must also include a

metadata endpoint that responds to WS-Transfer/Get based metadata requests for the

WSDL and policy for the IP/STS endpoint [WS-MetadataExchange]. The Identity Selector

retrieves the WSDL from that metadata endpoint to find the policy for communicating

securely with the IP/STS. The IP/STS metadata endpoint must support the secure HTTPS

transport mechanism to prevent policy tampering attacks.

The following example illustrates an Identity Provider with two endpoints for its IP/STS, one

requiring Kerberos (higher priority) and the other requiring username/password (lower

priority) as its authentication mechanism.

Example:

<ic:TokenServiceList>

 <ic:TokenService>

 <wsa:EndpointReference>

 <wsa:Address>http://contoso.com/sts/kerb</wsa:Address>

 <wsa:Metadata>

 <wsx:Metadata>

 <wsx:MetadataSection

 Dialect="http://schemas.xmlsoap.org/ws/2004/09/mex">

 <wsx:MetadataReference>

 <wsa:Address>https://contoso.com/sts/kerb/mex</wsa:Address>

 </wsx:MetadataReference>

 </wsx:MetadataSection>

 </wsx:Metadata>

 </wsa:Metadata>

 </wsa:EndpointReference>

 <ic:UserCredential>

 <ic:KerberosV5Credential />

 </ic:UserCredential>

 </ic:TokenService>

 <ic:TokenService>

 <wsa:EndpointReference>

 <wsa:Address>http://contoso.com/sts/pwd</wsa:Address>

 <wsa:Metadata>

 <wsx:Metadata>

 <wsx:MetadataSection

Version 1.5 Page 28 of 83

 Dialect="http://schemas.xmlsoap.org/ws/2004/09/mex">

 <wsx:MetadataReference>

 <wsa:Address>https://contoso.com/sts/pwd/mex</wsa:Address>

 </wsx:MetadataReference>

 </wsx:MetadataSection>

 </wsx:Metadata>

 </wsa:Metadata>

 </wsa:EndpointReference>

 <ic:UserCredential>

 <ic:UsernamePasswordCredential>

 <ic:Username>Zoe</ic:Username>

 </ic:UsernamePasswordCredential>

 </ic:UserCredential>

 </ic:TokenService>

</ic:TokenServiceList>

4.1.1.3. Expressing Token Types Offered

An Identity Provider can express the list of Security Token types it issues by using the

ic:SupportedTokenTypeList element in an Information Card. The following example

illustrates that an Identity Provider can issue both SAML 1.1 and SAML 2.0 tokens.

Example:

<ic:SupportedTokenTypeList>

 <wst:TokenType>urn:oasis:names:tc:SAML:1.0:assertion</wst:TokenType>

 <wst:TokenType>urn:oasis:names:tc:SAML:2.0:assertion</wst:TokenType>

</ic:SupportedTokenTypeList>

4.1.1.4. Expressing Claim Types Offered

An Identity Provider can express the list of claim types it can assert by using the

ic:SupportedClaimTypeList element in an Information Card. The following example

illustrates that an Identity Provider can assert two claim types.

Example:

<ic:SupportedClaimTypeList>

 <ic:SupportedClaimType Uri=".../ws/2005/05/identity/claims/givenname">

 <ic:DisplayTag xml:lang="en-us">Given Name</DisplayTag>

 </ic:SupportedClaimType>

 <ic:SupportedClaimType Uri=".../ws/2005/05/identity/claims/surname">

 <ic:DisplayTag xml:lang="en-us">Last Name</DisplayTag>

 </ic:SupportedClaimType>

</ic:SupportedClaimTypeList>

4.1.1.5. Requiring Token Scope Information

The Identity Selector, by default, does not convey information about the Relying Party

where an issued token will be used (i.e., target scope) when requesting Security Tokens.

This helps safeguard user privacy. However, an Identity Provider can override that behavior

if there are justifiable reasons to do so (e.g. audit requirements for compliance). The

element ic:RequireAppliesTo can be used for this purpose.

Example:

<ic:RequireAppliesTo />

The presence of this element in an Information Card dictates that an Identity Selector must

convey the Relying Party information in a wsp:AppliesTo element in its token request

message.

Version 1.5 Page 29 of 83

4.1.1.6. Expressing Privacy Policy Location

An Identity Provider can express the location of its privacy statement using the element

ic:PrivacyNotice in an Information Card. The XML attribute Version allows expressing

changes in the version of the privacy statement when its content changes. Following is an

example of using this element to express the privacy statement location.

Example:

<ic:PrivacyNotice Version="1">

http://www.contoso.com/privacynotice

</ic:PrivacyNotice>

An Identity Selector can only accept URL-based privacy statement location as shown above.

4.1.1.7. Prohibiting Use at Relying Parties Not Identified by a Cryptographically

Protected Identity

Issuers may inform Identity Providers that a card may only be used at Relying Parties

employing cryptographically secured identities (which are typically provided using HTTPS

certificates). An Identity Provider should consider using this option for any cards containing

sensitive data that should not be transmitted over an unencrypted channel. X.509v3

Certificates are the only form of cryptographically protected identity presently defined for

use with the Information Card Model.

4.1.2. Issuing Information Cards

An Identity Provider can issue Information Cards to its users using any out-of-band

mechanism that is mutually suitable. For example, a user may log on to a Web site provided

by the Identity Provider and download the Information Card over the HTTP connection.

Alternatively, an Identity Provider may send the Information Card through email to the

user‟s email address on file. Remember that the Information Card is not the Security Token;

it only contains metadata about the relationship between the user and the Identity Provider.

In order to provide the assurance that an Information Card is indeed issued by the Identity

Provider expected by the user, the Information Card should be carried inside a digitally

signed envelope that is signed by the Identity Provider. For this, the “enveloping signature”

construct (see [XMLDSIG]) should be used where the Information Card is included in the

ds:Object element. This is illustrated in the example below. The specific details of the XML

digital signature profile that should be used to sign the envelope is described in [ISIP]. The

signature on the digitally signed envelope provides data origin authentication assuring the

user that it came from the right Identity Provider.

It is highly recommend that an extended validation X.509 certificate for the Identity

Provider, preferably with extended validation logotypes, be used to sign the envelope. An

Identity Selector uses this certificate to show the Identity Provider in its user interface to

enable the user to visually identify it.

The following example shows an Information Card within an enveloping signature container

using that prescribed format.

Example:

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

 <SignedInfo>

 <CanonicalizationMethod

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

 <SignatureMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

 <Reference URI="#_Object_InformationCard">

Version 1.5 Page 30 of 83

 <Transforms>

 <Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

 </Transforms>

 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

 <DigestValue> ... </DigestValue>

 </Reference>

 </SignedInfo>

 <SignatureValue> ... </SignatureValue>

 <KeyInfo>

 <X509Data>

 <X509Certificate> ... </X509Certificate>

 </X509Data>

 </KeyInfo>

 <Object Id="_Object_InformationCard">

 <ic:InformationCard

 xmlns:ic="http://schemas.xmlsoap.org/ws/2005/05/identity"

 xml:lang="en-us">

 [Actual Information Card content]

 </ic:InformationCard>

 </Object>

</Signature>

The Identity Selector verifies the enveloping signature and visually identifies the Identity

Provider to the user in its user interface. Upon user approval, it extracts the

ic:InformationCard element and stores it in the user‟s Information Card collection.

Identity Selectors recognize the special file extension “.crd” for Information Cards. A file

with that extension is recognized and interpreted as a signed XML document representing

an issued Information Card. A file named with the .CRD file extension and containing the

document shown in the example above would be treated as an Information Card. The MIME

type “application/x-informationCardFile” should be used for these files.

4.2. Identity Provider Policy

An Identity Provider uses the policy assertions defined in WS-SecurityPolicy to specify the

authentication and communication security requirements of its IP/STS. Policy assertions are

attached to endpoints or messages in the WSDL for the IP/STS. This section describes any

additional policy elements or requirements introduced by the Information Card Model.

4.2.1. Require Information Card Provisioning

In the Information Card Model, an Identity Provider requires provisioning in the form of an

Information Card issued by it which represents the provisioned identity of the user. In order

to enable a token requester to learn that such pre-provisioning is necessary before token

requests can be made, the Identity Provider must provide an indication in its policy.

An Identity Provider issuing Information Cards must specify its provisioning requirement in

its policy using the optional policy element ic:RequireFederatedIdentityProvisioning

defined in [ISIP]. Following is an example of using this policy element.

Example:

<wsp:Policy>

 ...

<ic:RequireFederatedIdentityProvisioning />

<sp:SymmetricBinding>

 ...

</sp:SymmetricBinding>

Version 1.5 Page 31 of 83

 ...

</wsp:Policy>

Further, to allow the Identity Provider to verify that its provisioning requirement has been

satisfied, a token requester must include a reference to the provisioned entity in its token

requests to the IP/STS. An Identity Selector always includes a reference to the specific

Information Card used in its token request.

The ic:RequireFederatedIdentityProvisioning element is often placed at federation

boundaries. When crossing a trust boundary it makes sense that a user interaction may

occur, and Information Cards enable the user to be involved.

The ic:RequireFederatedIdentityProvisioning element is required to resolve

ambiguities in many cases, such as in the case that a Web service is accessed by a Web

services application. In this case, the stack needs to have a way to know if the Identity

Selector should be invoked. The credential required to authenticate to the final STS in a

chain can be collected in other ways than just the Identity Selector, such as when the

credentials of the currently logged in user are used, or the user is prompted directly for a

username and password by an application. If the

ic:RequireFederatedIdentityProvisioning element is in the last Policy in a Policy chain

(or one from the last), the Identity Selector will be invoked.

4.2.2. Secure Policy Metadata

The IP/STS must provide a metadata endpoint that responds to WS-Transfer/Get based

metadata requests for its WSDL and policy (see Section 4.1.1.2). An Identity Selector

retrieves the WSDL from the metadata endpoint for the IP/STS to find the policy for

communicating securely with it. The metadata endpoint must support the secure HTTPS

transport mechanism to prevent policy tampering attacks.

Section 5.1 illustrates the request and response messages of a retrieval of WSDL with policy

metadata.

4.3. Token Request and Response

When the user selects an Information Card on a Service Requester machine to send to a

Relying Party, the Identity Selector on that system obtains a Security Token from the

IP/STS for that Information Card. Security Tokens are requested using the issuance binding

mechanism described in WS-Trust. Specifically, tokens are requested by submitting a

RequestSecuriyToken (RST) message to the IP/STS.

This section describes the specific extensions to the token request message introduced by

the Information Card Model (defined in [ISIP]), and the specific behavior of an Identity

Selector when requesting tokens. Note that the extension elements introduced by the

Information Card Model are all optional, and they can be ignored by an IP/STS if present in

a token request.

4.3.1. Information Card Reference

Each Information Card has a unique identifier and version by which it can be referenced,

given by the ic:InformationCardReference element in an Information Card. When

requesting tokens from the IP/STS, An Identity Selector includes the Information Card

reference in the RST message as a top-level element information item.

Following is an example of the Information Card reference included in a RST message.

Example:

<wst:RequestSecurityToken>

Version 1.5 Page 32 of 83

 ...

 <ic:InformationCardReference>

 <ic:CardId>http://xyz.com/CardId/d795621fa01d454285f9</ic:CardId>

 <ic:CardVersion>1</ic:CardVersion>

 </ic:InformationCardReference>

 ...

</wst:RequestSecurityToken>

The card reference is only meaningful to the IP/STS. It may use that information to ensure

that a valid provisioning action had occurred earlier, or to determine if the corresponding

Information Card is stale or out-of-date for whatever reason. The IP/STS may fault with

ic:InformationCardRefreshRequired (defined in [ISIP]) to signal to the Service

Requester that the Information Card needs to be refreshed.

4.3.2. Claims and Other Token Parameters

A Relying Party may require a specific set of claims and other token parameters that must

be communicated to the IP/STS. These are expressed in the policy of the Relying Party

using the sp:RequestSecurityTokenTemplate parameter within the sp:IssuedToken policy

assertion (see Section 3.1). The content of this element (i.e. its [child] elements) are

directly copied by the Identity Selector into the RST message sent to the IP/STS.

For example, if the Relying Party asks for an issued token in its policy as follows:

<sp:IssuedToken>

 <sp:RequestSecurityTokenTemplate>

 <wst:KeyType>

 http://schemas.xmlsoap.org/ws/2005/02/trust/PublicKey

 </wst:KeyType>

 <wst:Claims

 wst:Dialect="http://schemas.xmlsoap.org/ws/2005/05/identity">

 <ic:ClaimType

 Uri="http://.../ws/2005/05/identity/claims/givenname"/>

 <ic:ClaimType

 Uri="http://.../ws/2005/05/identity/claims/surname"

 Optional="true" />

 </wst:Claims>

 </sp:RequestSecurityTokenTemplate>

</sp:IssuedToken>

An Identity Selector on the Service Requester copies the content of the element

sp:RequestSecurityTokenTemplate into the RST message as follows.

Example:

<wst:RequestSecurityToken>

 <wst:KeyType>

 http://schemas.xmlsoap.org/ws/2005/02/trust/PublicKey

 </wst:KeyType>

 <wst:Claims

 wst:Dialect="http://schemas.xmlsoap.org/ws/2005/05/identity">

 <ic:ClaimType

 Uri="http://.../ws/2005/05/identity/claims/givenname"/>

 <ic:ClaimType

 Uri="http://.../ws/2005/05/identity/claims/surname"

 Optional="true" />

 </wst:Claims>

 ...

</wst:RequestSecurityToken>

Version 1.5 Page 33 of 83

However, the elements corresponding to optional claims not selected by the user are not

copied from the RST template into the RST, for privacy reasons.

4.3.3. Token Scope

The WS-Trust protocol allows a token requester to indicate the target where the issued

token will be used (i.e., token scope) by using the optional element wsp:AppliesTo in the

RST message. When included in a token request message, this element typically contains

the endpoint reference of the Relying Party.

To protect user privacy, an Identity Selector does not, by default, reveal information about

the Relying Party to the Identity Provider in token requests. In other words, the element

wsp:AppliesTo is absent in token request RST messages. However, if the Identity Provider

includes the ic:RequireAppliesTo element in the Information Card, then the token scope

information may be included in the token request. The actual behavior of an Identity

Selector with respect to when and how the wsp:AppliesTo element is included in the token

request is described in [ISIP].

The following example illustrates the token scope information included in a RST message.

Example:

<wst:RequestSecurityToken>

 <wsp:AppliesTo>

 <wsa:EndpointReference>

 <wsa:Address>http://ip.fabrikam.com</wsa:Address>

 <wsid:Identity>

 <ds:KeyInfo>

 <ds:X509Data>

 <ds:X509Certificate>...</ds:X509Certificate>

 </ds:X509Data>

 </ds:KeyInfo>

 </wsid:Identity>

 </wsa:EndpointReference>

 </wsp:AppliesTo>

 ...

</wst:RequestSecurityToken>

4.3.4. Client Pseudonym

The claim type “private personal identifier” (or PPID) defined in [ISIP] and identified by the

following URI represents a pseudonym for a user at a given Relying Party.

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/privatepersonalidentifier

It has the privacy property that the PPID for a user at two different relying parties is

guaranteed to be different such that they cannot be used as the basis for collusion.

An Identity Provider issuing this claim must do so using data present in the RST request. If

the target scope information is present in the token request, then it can be used for

constructing an RP-specific PPID claim value. However, an Identity Selector does not always

include target scope information in its request. To enable an Identity Provider that supports

the PPID claim type to be able to always produce a consistent RP-specific claim value, the

extension element ic:ClientPseudonym/ic:PPID is included in the RST request when

token scope information is absent. It contains the result of applying a hash function to a

Relying Party identity and optional user-supplied entropy to produce an opaque yet

consistent reference for the Relying Party. The IP/STS may use this value as is or as an

input seed to a custom function to derive a value for the PPID claim.

Version 1.5 Page 34 of 83

An opaque reference for the Relying Party included in a RST message is shown in the

following example.

Example:

<wst:RequestSecurityToken>

 <ic:ClientPseudonym>

 <ic:PPID>MIIEZzCCA9CgAwIBAgIQEmtJZc0=</ic:PPID>

 </ic:ClientPseudonym >

 ...

</wst:RequestSecurityToken>

Some readers may note that from a cryptographic perspective, the use of the ic:HashSalt

value for computing PPID claim, ic:ClientPseudonym/ic:PPID, and related values may

be regarded as redundant with the use of the ic:MasterKey element, since both contribute

entropy that is not known to the Identity Provider or Relying Party. Nonetheless, producing

compatible PPID values, etc. across different Identity Selectors depends upon a consistent

treatment of all values that are inputs to these computations, including the ic:HashSalt

value.

4.3.5. Proof Key for Issued Token

A Security Token asserts claims which can be coupled with digital signatures to provide

mechanisms for demonstrating evidence of the sender‟s knowledge of the keys described by

the Security Token. The key described by a Security Token is called the “proof key”, and the

data used to demonstrate the sender‟s knowledge of that key is called “proof-of-possession”

of the Security Token.

The optional wst:KeyType element in the RST request indicates the type of proof key

desired in the issued Security Token. An issued token may have a symmetric proof key

(symmetric key token), an asymmetric proof key (asymmetric key token), or no proof key

(bearer token). A Relying Party can specify the desired key type in its policy within the

sp:RequestSecurityTokenTemplate parameter of its required token assertion. If no key

type is specified in the Relying Party policy, then an Identity Selector requests an

asymmetric key token from the IP/STS by default.

The IP/STS can return the proof key in a wst:RequestedProofToken element in the RSTR

response along with the issued token. Note that the token response is always carried over a

confidential channel wherein either an encrypted transport (transport security) or SOAP

message confidentiality (message security) is used.

The actual behavior of an Identity Selector with respect to how each proof key type is

requested, who contributes entropy, and how the proof key is computed and returned is

described in [ISIP].

4.3.6. Display Token

An Identity Selector is agnostic of specific token types that may be requested by a Relying

Party and issued by an Identity Provider. The token returned by an IP/STS may be

completely opaque to an Identity Selector which simply provides a conduit. However, to

allow informed user consent and release, the Information Card Model introduces the notion

of a Display Token. It is an informational token associated with the actual Security Token

that essentially contains a friendly representation of the claims carried in the Security

Token. Its friendly content can be displayed to the user in user interfaces.

The optional ic:RequestDisplayToken element defined in [ISIP] can be used in the RST

message to request a Display Token corresponding to the issued token from the IP/STS. It

is optional for an IP/STS to process Display Token requests. However, it is highly

Version 1.5 Page 35 of 83

recommended that when requested Display Tokens are returned along with issued tokens,

informed participation by the user occur. An Identity Selector always requests a Display

Token with every token request.

The following example shows a token request including a request for Display Token localized

in “US English”.

Example:

<wst:RequestSecurityToken>

 ...

 <ic:RequestDisplayToken xml:lang="en-us" />

</wst:RequestSecurityToken>

To return a Display Token, the IP/STS can use the optional ic:RequestedDisplayToken

element defined in [ISIP] in the RSTR response message. The xml:lang attribute is used to

specify the language in which the returned Display Token is localized.

The following example illustrates a token response that includes a Display Token localized in

“US English” for a Security Token carrying two claims.

Example:

<wst:RequestSecurityTokenResponse>

 ...

 <ic:RequestedDisplayToken>

 <ic:DisplayToken xml:lang="en-us">

 <ic:DisplayClaim Uri="http://.../ws/2005/05/identity/claims/givenname">

 <ic:DisplayTag>Given Name</ic:DisplayTag>

 <ic:DisplayValue>John</ic:DisplayValue>

 </ic:DisplayClaim>

 <ic:DisplayClaim Uri="http://.../ws/2005/05/identity/claims/surname">

 <ic:DisplayTag>Last Name</ic:DisplayTag>

 <ic:DisplayValue>Doe</ic:DisplayValue>

 </ic:DisplayClaim>

 <ic:DisplayToken>

 </ic:RequestedDisplayToken>

</wst:RequestSecurityTokenResponse>

5. Message Exchanges with Identity Provider

The Information Card includes a descriptor for the user credential needed to authenticate

the user to the IP/STS when requesting tokens. For each supported credential type, this

section describes in detail:

 the format of the credential descriptor used,

 the Security Policy that the IP/STS should use, and

 the SOAP messages exchanged between the IP/STS and token requester.

Note that an Identity Selector retrieves the WSDL containing the Security Policy of the

IP/STS before requesting tokens to determine how messages are to be secured and the

type of authentication to use. If the required authentication token type in the retrieved

Security Policy does not match the corresponding credential type specified in the

Information Card, then it fails without sending the token request.

The security of the messages exchanged between an Identity Selector and the IP/STS are

governed by the Security Binding assertions specified in the IP/STS policy. For the binding

assertions, WS-SecurityPolicy specifies the SOAP security header layout for ordering of

elements and signatures in messages. The XML signature [XMLDSIG] profile used for

Version 1.5 Page 36 of 83

signatures and the XML encryption [XMLENC] profile used for encryption of keys and other

elements in the messages is governed by the value of the sp:AlgorithmSuite assertion in

the Security Binding. These profiles are also described in WS-SecurityPolicy.

5.1. Retrieving Identity Provider Policy

When an Information Card is selected by the user, the Identity Selector prepares to request

a Security Token from the corresponding IP/STS by first fetching its WSDL containing its

Security Policy. The WSDL is retrieved as metadata by using the WS-Transfer/Get based

retrieval method defined in [WS-MetadataExchange] and illustrated in this section. The

IP/STS endpoint specified in an Information Card issued by the IP must include an endpoint

that responds to WS-Transfer/Get based metadata requests from a client.

5.1.1. WSDL and Security Policy

The Security Policy of the IP/STS indicates endpoint behavior over a token request/response

sequence, and specifies policy for client credential requirements and how messages should

be secured on the channel. In the WSDL, policy meant for an STS endpoint should be

attached to the wsdl:binding element whereas policy meant for token request/response

messages should be attached to the wsdl:operation element (or the wsdl:input and

wsdl:output elements).

This section illustrates the complete metadata that can be used by an IP/STS to specify its

WSDL and Security Policy. The metadata illustrations show the attachment of policy to the

appropriate WSDL elements. The Security Policy for two separate cases are discussed

below, one using transport security and the other using message security for securing the

token request and response exchanges between the IP/STS and the client.

The examples use a target namespace of http://constoso.com that must be replaced with

the actual namespace representing the IP/STS. Further, the required token assertion in the

Security Policy for authenticating the client varies with the type of client credential required.

The credential specific token assertion in the Security Policy is shown as a placeholder in the

examples, and more specifically described in the credential specific sections that follow.

5.1.1.1. Using Transport Binding

This section illustrates the metadata of an IP/STS containing its WSDL and Security Policy

when transport security (transport binding) is used to secure its SOAP message

exchanges with a client. For this Security Binding, message protection and security

correlation for the request and response legs of the message exchange is provided by the

secure HTTPS transport. There is no message level encryption required. This is described in

WS-SecurityPolicy.

Example:

Metadata containing WSDL and policy when using transport security:

<Metadata xmlns="http://schemas.xmlsoap.org/ws/2004/09/mex">

 <MetadataSection

 Dialect="http://schemas.xmlsoap.org/wsdl/"

 Identifier="http://schemas.xmlsoap.org/ws/2005/02/trust">

 <wsdl:definitions name="STS_wsdl" targetNamespace="http://contoso.com"

 xmlns:tns="http://contoso.com"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust"

 xmlns:wsid="http://schemas.xmlsoap.org/ws/2006/02/addressingidentity"

Version 1.5 Page 37 of 83

 xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"

 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

 xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy"

 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-utility-1.0.xsd"

 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:ic="http://schemas.xmlsoap.org/ws/2005/05/identity"

 xmlns:q1="http://contoso.com/schemas">

 <wsdl:types>

 <xs:schema

targetNamespace="http://schemas.xmlsoap.org/ws/2005/02/trust/Imports">

 <xs:import schemaLocation="" namespace="http://contoso.com/schemas"

/>

 </xs:schema>

 </wsdl:types>

 <wsdl:message name="RequestSecurityTokenMsg">

 <wsdl:part name="request" type="q1:MessageBody" />

 </wsdl:message>

 <wsdl:message name="RequestSecurityTokenResponseMsg">

 <wsdl:part name="response" type="q1:MessageBody" />

 </wsdl:message>

 <wsdl:portType name="SecurityTokenService">

 <wsdl:operation name="Issue">

 <wsdl:input

wsaw:Action="http://schemas.xmlsoap.org/ws/2005/02/trust/RST/Issue"

 message="tns:RequestSecurityTokenMsg">

 </wsdl:input>

 <wsdl:output

wsaw:Action="http://schemas.xmlsoap.org/ws/2005/02/trust/RSTR/Issue"

 message="tns:RequestSecurityTokenResponseMsg">

 </wsdl:output>

 </wsdl:operation>

 </wsdl:portType>

 <wsp:Policy wsu:Id="STS_endpoint_policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <ic:RequireFederatedIdentityProvisioning />

 <sp:TransportBinding>

 <wsp:Policy>

 <sp:TransportToken>

 <wsp:Policy>

 <sp:HttpsToken RequireClientCertificate="false"/>

 </wsp:Policy>

 </sp:TransportToken>

 <sp:AlgorithmSuite>

 <wsp:Policy>

 <sp:Basic256/>

 </wsp:Policy>

 </sp:AlgorithmSuite>

 <sp:Layout>

 <wsp:Policy>

 <sp:Strict/>

 </wsp:Policy>

 </sp:Layout>

Version 1.5 Page 38 of 83

 <sp:IncludeTimestamp/>

 </wsp:Policy>

 </sp:TransportBinding>

 [Authentication token assertion]

 <sp:Wss11>

 <wsp:Policy>

 <sp:MustSupportRefThumbprint/>

 <sp:MustSupportRefEncryptedKey/>

 </wsp:Policy>

 </sp:Wss11>

 <sp:Trust10>

 <wsp:Policy>

 <sp:RequireClientEntropy/>

 <sp:RequireServerEntropy/>

 </wsp:Policy>

 </sp:Trust10>

 <wsaw:UsingAddressing wsdl:required="true" />

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

 <wsdl:binding name="Transport_binding" type="tns:SecurityTokenService">

 <wsp:PolicyReference URI="#STS_endpoint_policy"/>

 <soap12:binding transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="Issue">

 <soap12:operation

soapAction="http://schemas.xmlsoap.org/ws/2005/02/trust/RST/Issue"

 style="document"/>

 <wsdl:input>

 <soap12:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap12:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="STS_0">

 <wsdl:port name="STS_0_port" binding="tns:Transport_binding">

 <soap12:address location="https://contoso.com/sts"/>

 <wsa:EndpointReference>

 <wsa:Address>https://contoso.com/sts</wsa:Address>

 <wsid:Identity>

 <ds:KeyInfo>

 <ds:X509Data>

 <ds:X509Certificate>

 [base64 encoded certificate value]

 </ds:X509Certificate>

 </ds:X509Data>

 </ds:KeyInfo>

 </wsid:Identity>

 </wsa:EndpointReference>

 </wsdl:port>

 </wsdl:service>

 </wsdl:definitions>

 </MetadataSection>

Version 1.5 Page 39 of 83

 <MetadataSection

 Dialect="http://www.w3.org/2001/XMLSchema"

 Identifier="http://contoso.com/schemas">

 <xs:schema xmlns:tns="http://contoso.com/schemas"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 targetNamespace="http://contoso.com/schemas">

 <xs:complexType name="MessageBody">

 <xs:sequence>

 <xs:any maxOccurs="unbounded" minOccurs="0" namespace="##any"/>

 </xs:sequence>

 </xs:complexType>

 </xs:schema>

 </MetadataSection>

</Metadata>

Note that the token assertion required for client authentication is shown as a placeholder

with the text "[Authentication Token Assertion]” inside the Security Policy and highlighted in

the metadata example above. The authentication token assertion for each type of required

client credential is described in later sections. Other metadata content that would need to

be substituted when used with a real IP/STS is also highlighted.

5.1.1.2. Using Symmetric Binding

This section illustrates the metadata of an IP/STS containing its WSDL and Security Policy

when symmetric message security (symmetric binding) is used to secure its SOAP

message exchanges with a client. For this Security Binding, message protection and security

correlation for the request and response legs of the message exchange is provided by an

ephemeral symmetric session key. Message integrity and confidentiality is governed by the

policy attached to individual messages in the WSDL. This is described in [WS-

SecurityPolicy].

Example:

Metadata containing WSDL and policy when using message security with symmetric binding:

<Metadata xmlns="http://schemas.xmlsoap.org/ws/2004/09/mex">

 <MetadataSection

 Dialect="http://schemas.xmlsoap.org/wsdl/"

 Identifier="http://schemas.xmlsoap.org/ws/2005/02/trust">

 <wsdl:definitions name="STS_wsdl" targetNamespace="http://contoso.com"

 xmlns:tns="http://contoso.com"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust"

 xmlns:wsid="http://schemas.xmlsoap.org/ws/2006/02/addressingidentity"

 xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"

 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

 xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy"

 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-utility-1.0.xsd"

 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:ic="http://schemas.xmlsoap.org/ws/2005/05/identity"

 xmlns:q1="http://contoso.com/schemas">

 <wsdl:types>

Version 1.5 Page 40 of 83

 <xs:schema

targetNamespace="http://schemas.xmlsoap.org/ws/2005/02/trust/Imports">

 <xs:import schemaLocation="" namespace="http://contoso.com/schemas"

/>

 </xs:schema>

 </wsdl:types>

 <wsdl:message name="RequestSecurityTokenMsg">

 <wsdl:part name="request" type="q1:MessageBody" />

 </wsdl:message>

 <wsdl:message name="RequestSecurityTokenResponseMsg">

 <wsdl:part name="response" type="q1:MessageBody" />

 </wsdl:message>

 <wsdl:portType name="SecurityTokenService">

 <wsdl:operation name="Issue">

 <wsdl:input

wsaw:Action="http://schemas.xmlsoap.org/ws/2005/02/trust/RST/Issue"

 message="tns:RequestSecurityTokenMsg">

 </wsdl:input>

 <wsdl:output

wsaw:Action="http://schemas.xmlsoap.org/ws/2005/02/trust/RSTR/Issue"

 message="tns:RequestSecurityTokenResponseMsg">

 </wsdl:output>

 </wsdl:operation>

 </wsdl:portType>

 <wsp:Policy wsu:Id="STS_endpoint_policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <ic:RequireFederatedIdentityProvisioning />

 <sp:SymmetricBinding>

 <wsp:Policy>

 <sp:ProtectionToken>

 <wsp:Policy>

 <sp:X509Token sp:IncludeToken="http://schemas.xmlsoap.org

/ws/2005/07/securitypolicy/IncludeToken/Never">

 <wsp:Policy>

 <sp:RequireThumbprintReference/>

 <sp:WssX509V3Token10/>

 </wsp:Policy>

 </sp:X509Token>

 </wsp:Policy>

 </sp:ProtectionToken>

 <sp:AlgorithmSuite>

 <wsp:Policy>

 <sp:Basic256/>

 </wsp:Policy>

 </sp:AlgorithmSuite>

 <sp:Layout>

 <wsp:Policy>

 <sp:Strict/>

 </wsp:Policy>

 </sp:Layout>

 <sp:IncludeTimestamp/>

 <sp:OnlySignEntireHeadersAndBody/>

 </wsp:Policy>

 </sp:SymmetricBinding>

Version 1.5 Page 41 of 83

 [Authentication token assertion]

 <sp:Wss11>

 <wsp:Policy>

 <sp:MustSupportRefThumbprint/>

 <sp:MustSupportRefEncryptedKey/>

 </wsp:Policy>

 </sp:Wss11>

 <sp:Trust10>

 <wsp:Policy>

 <sp:RequireClientEntropy/>

 <sp:RequireServerEntropy/>

 </wsp:Policy>

 </sp:Trust10>

 <wsaw:UsingAddressing wsdl:required="true" />

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

 <wsp:Policy wsu:Id="STS_message_policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <sp:SignedParts>

 <sp:Body />

 <sp:Header Name="To"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="From"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="FaultTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="ReplyTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="MessageID"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="RelatesTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="Action"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 </sp:SignedParts>

 <sp:EncryptedParts>

 <sp:Body />

 </sp:EncryptedParts>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

 <wsdl:binding name="Symmetric_binding" type="tns:SecurityTokenService">

 <wsp:PolicyReference URI="#STS_endpoint_policy"/>

 <soap12:binding transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="Issue">

 <soap12:operation

soapAction="http://schemas.xmlsoap.org/ws/2005/02/trust/RST/Issue"

 style="document"/>

 <wsdl:input>

 <wsp:PolicyReference URI="#STS_message_policy"/>

 <soap12:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

Version 1.5 Page 42 of 83

 <wsp:PolicyReference URI="#STS_message_policy"/>

 <soap12:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="STS_0">

 <wsdl:port name="STS_0_port" binding="tns:Symmetric_binding">

 <soap12:address location="http://contoso.com/sts"/>

 <wsa:EndpointReference>

 <wsa:Address>http://contoso.com/sts</wsa:Address>

 <wsid:Identity>

 <ds:KeyInfo>

 <ds:X509Data>

 <ds:X509Certificate>

 [base64 encoded certificate value]

 </ds:X509Certificate>

 </ds:X509Data>

 </ds:KeyInfo>

 </wsid:Identity>

 </wsa:EndpointReference>

 </wsdl:port>

 </wsdl:service>

 </wsdl:definitions>

 </MetadataSection>

 <MetadataSection

 Dialect="http://www.w3.org/2001/XMLSchema"

 Identifier="http://contoso.com/schemas">

 <xs:schema xmlns:tns="http://contoso.com/schemas"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 targetNamespace="http://contoso.com/schemas">

 <xs:complexType name="MessageBody">

 <xs:sequence>

 <xs:any maxOccurs="unbounded" minOccurs="0" namespace="##any"/>

 </xs:sequence>

 </xs:complexType>

 </xs:schema>

 </MetadataSection>

</Metadata>

Note that the token assertion required for client authentication is shown as a placeholder

with the text "[Authentication Token Assertion]” inside the Security Policy and highlighted in

the metadata example above. The authentication token assertion for each type of required

client credential is described in later sections. Other metadata content that would need to

be substituted when used with a real IP/STS is also highlighted.

5.1.2. Message Exchange

An Identity Selector retrieves the WSDL of the IP/STS including its policy using the WS-

Transfer/Get request mechanism specified in [WS-MetadataExchange].

The following SOAP request/response messages illustrate this exchange.

Metadata request from Service Requester to IP/STS:

<S:Envelope ...>

 <S:Header>

Version 1.5 Page 43 of 83

 <wsa:Action S:mustUnderstand="1">

 http://schemas.xmlsoap.org/ws/2004/09/transfer/Get

 </wsa:Action>

 <wsa:MessageID>

 urn:uuid:ab9e1c77-0cea-4f2f-a586-78c15536137d

 </wsa:MessageID>

 <wsa:To S:mustUnderstand="1">https://contoso.com/sts/mex</wsa:To>

 <wsa:ReplyTo>

 <wsa:Address>

 http://www.w3.org/2005/08/addressing/anonymous

 </wsa:Address>

 </wsa:ReplyTo>

 </S:Header>

 <S:Body />

</S:Envelope>

Note the following in the metadata request message:

 The request is directed at an endpoint secured using the HTTPS transport.

 The request does not specify any specific metadata dialect causing all available

metadata at that endpoint to be returned.

Metadata response from IP/STS to Service Requester:

<S:Envelope ...>

 <S:Header>

 <wsa:Action S:mustUnderstand="1">

 http://schemas.xmlsoap.org/ws/2004/09/transfer/GetResponse

 </wsa:Action>

 <wsa:RelatesTo>

 urn:uuid:ab9e1c77-0cea-4f2f-a586-78c15536137d

 </wsa:RelatesTo>

 </S:Header>

 <S:Body>

 <Metadata xmlns="http://schemas.xmlsoap.org/ws/2004/08/mex">

 [The metadata containing a WSDL metadata section and a

 XML schema metadata section as shown in the previous

 subsection goes here]

 </Metadata>

 </S:Body>

</S:Envelope>

Note the following in the metadata response message:

 One or more metadata sections may be returned in the response, each section

containing a different type of metadata or part of a metadata type, e.g., WSDL with

message and port type definitions, policy declarations, bindings with policy

attachments, or an XML schema for type definitions used.

5.2. Authenticating with Username and Password

The Identity Provider requires that the Service Requester submit a username and password

as the credential to authenticate to the IP/STS when requesting tokens.

5.2.1. Credential Format

The credential descriptor format for username/password defined in [ISIP] has the following

form:

<ic:UserCredential>

Version 1.5 Page 44 of 83

 <ic:UsernamePasswordCredential>

 <ic:Username>zoe</ic:Username>

 </ic:UsernamePasswordCredential>

</ic:UserCredential>

For convenience of the user, the “username” value can be optionally included in the

Information Card in the ic:Username element of the credential descriptor as shown in the

example above. The user will be prompted to supply the “password” when the Information

Card is selected for use.

5.2.2. Security Policy

Transport security using the “transport binding” should be used for token requests using

this authentication method. As an alternative, message security using the “symmetric

binding” may also be used for token requests using this authentication method.

The authentication token assertion in Security Policy that should be used inside the WSDL of

the IP/STS, as described in Section 5.1.1, is shown below. This token assertion can be used

regardless of whether transport binding (Section 5.1.1.1) or symmetric binding (Section

5.1.1.2) is used.

Authentication token assertion in Security Policy:

<sp:SignedSupportingTokens>

 <wsp:Policy>

 <sp:UsernameToken

sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/Include

Token/AlwaysToRecipient">

 <wsp:Policy>

 <sp:WssUsernameToken10/>

 </wsp:Policy>

 </sp:UsernameToken>

 </wsp:Policy>

</sp:SignedSupportingTokens>

5.2.3. Message Exchange

This section provides the SOAP message exchanges when transport security with “transport

binding” is used by the IP/STS. For this Security Binding, message protection and security

correlation for the request and response legs of the message exchange is provided by the

secure HTTPS transport. There is no message level encryption required.

The following SOAP messages show the request/response exchange when transport security

is used (see WSDL and policy for transport security in Section 5.1.1.1). The exchange when

message security is used is shown in later sections for other credential types.

Token request from Service Requester to IP/STS:

<S:Envelope ...>

 <S:Header>

 <wsa:Action wsu:Id="_1">

 http://schemas.xmlsoap.org/ws/2005/02/trust/RST/Issue

 </wsa:Action>

 <wsa:MessageID wsu:Id="_2">

 uuid:eb9e1c77-0cea-4f2f-a586-78c15536137c

 </wsa:MessageID>

 <wsa:To wsu:Id="_3">

 https://contoso.com/sts

 </wsa:To>

 <wsa:ReplyTo wsu:Id="_4">

Version 1.5 Page 45 of 83

 <wsa:Address>

 http://www.w3.org/2005/08/addressing/anonymous

 </wsa:Address>

 </wsa:ReplyTo>

 <wsse:Security S:mustUnderstand="1">

 <wsu:Timestamp wsu:Id="_6">

 <wsu:Created>2004-10-18T09:02:00Z</wsu:Created>

 <wsu:Expires>2004-10-18T09:12:00Z</wsu:Expires>

 </wsu:Timestamp>

 <!-- Username w/ cleartext password as authentication token -->

 <wsse:UsernameToken wsu:Id="_6">

 <wsse:Username>Zoe</wsse:Username>

 <wsse:Password

 Type="http:// http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-username-token-profile-1.0#PasswordText">

 ILoveDogs

 </wsse:Password>

 </wsse:UsernameToken>

 </wsse:Security>

 </S:Header>

 <S:Body wsu:Id="_10">

 <wst:RequestSecurityToken>

 <wst:TokenType>urn:oasis:names:tc:SAML:1.0:assertion</wst:TokenType>

 <wst:RequestType>

 http://schemas.xmlsoap.org/ws/2005/02/trust/Issue

 </wst:RequestType>

 <wst:KeyType>

 http://schemas.xmlsoap.org/ws/2005/02/trust/SymmetricKey

 </wst:KeyType>

 <wst:KeySize>256</wst:KeySize>

 <wst:Entropy>

 <wst:BinarySecret>mQlxWxEifnHgQpylcD7LYSkJplpE=</wst:BinarySecret>

 </wst:Entropy>

 <wsp:AppliesTo>

 <wsa:EndpointReference>

 <wsa:Address>http://www.relying-party.com</wsa:Address>

 <wsid:Identity>...</wsid:Identity>

 </wsa:EndpointReference>

 </wsp:AppliesTo>

 <ic:InformationCardReference>

 <ic:CardId>http://contoso.com/id/d795621fa01d454285f9</ic:CardId>

 </ic:InformationCardReference>

 <wst:Claims

 wst:Dialect="http://schemas.xmlsoap.org/ws/2005/05/identity">

 <ic:ClaimType Uri="http://.../ws/2005/05/identity/claims/givenname"/>

 <ic:ClaimType Uri="http://.../ws/2005/05/identity/claims/surname"/>

 </wst:Claims>

 <ic:RequestDisplayToken xml:lang="en-us" />

 </wst:RequestSecurityToken>

 </S:Body>

</S:Envelope>

Note the following in the request message:

 The request is sent over HTTPS since a username/password token is used for

authentication.

 A symmetric proof key is requested for which client-entropy is also included.

Version 1.5 Page 46 of 83

 Relying Party information in the form of an endpoint reference and its identity token

is communicated to the IP/STS via the wsp:AppliesTo element (the example shown

assumes that the IP/STS specified the ic:RequireAppliesTo assertion in the

Information Card).

 The Information Card reference (CardId) is included.

 A Display Token localized in “US English” is requested.

Token response from IP/STS to Service Requester:

<S:Envelope ...>

 <S:Header>

 <wsa:Action wsu:Id="_1">

 http://schemas.xmlsoap.org/ws/2005/02/trust/RSTR/Issue

 </wsa:Action>

 <wsa:RelatesTo wsu:Id="_2">

 uuid:eb9e1c77-0cea-4f2f-a586-78c15536137c

 </wsa:RelatesTo>

 <wsa:To wsu:Id="_3">

 http://www.w3.org/2005/08/addressing/anonymous

 </wsa:To>

 <wsse:Security S:mustUnderstand="1">

 <wsu:Timestamp wsu:Id="_6">

 <wsu:Created>2004-10-18T09:02:00Z</wsu:Created>

 <wsu:Expires>2004-10-18T09:12:00Z</wsu:Expires>

 </wsu:Timestamp>

 </wsse:Security>

 </S:Header>

 <S:Body wsu:Id="_10">

 <wst:RequestSecurityTokenResponse>

 <wst:TokenType>urn:oasis:names:tc:SAML:1.0:assertion</wst:TokenType>

 <wst:Lifetime>

 <wsu:Created>2004-10-18T09:02:00Z</wsu:Created>

 <wsu:Expires>2004-10-18T09:12:00Z</wsu:Expires>

 </wst:Lifetime>

 <wst:RequestedSecurityToken>

 <!-- Start encrypted token

 <saml:Assertion xmlns="urn:oasis:names:tc:SAML:1.1:assertion"

 AssertionID="uuid:17e2007e-f959-4624-85ef-ae00df6fe071" ...>

 ...

 </saml:Assertion>

 End encrypted token -->

 <xenc:EncryptedData Type="http://www.w3.org/2001/04/xmlenc#Element">

 <xenc:EncryptionMethod

 Algorithm="http://www.w3.org/2001/04/xmlenc#aes256-cbc"/>

 <ds:KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">

 <xenc:EncryptedKey>

 <xenc:EncryptionMethod

 Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p">

 <ds:DigestMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 </xenc:EncryptionMethod

 <ds:KeyInfo>

 <!-- token encryption key is encrypted to certificate

 of Relying Party -->

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentifier

Version 1.5 Page 47 of 83

 ValueType="http://docs.oasis-open.org/wss/2004/xx/oasis-

2004xx-wss-soap-message-security-1.1#ThumbprintSHA1"

 EncodingType="http://docs.oasis-

open.org/wss/2004/01/oasis200401-wss-soap-message-security-1.0#Base64Binary">

 +PYbznDaB/dlhjIfqCQ458E72wA=

 </wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>...</xenc:CipherValue>

 </xenc:CipherData>

 </xenc:EncryptedKey>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>...</xenc:CipherValue>

 </CipherData>

 </EncryptedData>

 </wst:RequestedSecurityToken>

 <wst:RequestedAttachedReference>

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentifier ValueType="http://docs.oasis-open.org/wss/

oasis-wss-saml-token-profile-1.0#SAMLAssertionID">

 uuid:17e2007e-f959-4624-85ef-ae00df6fe071

 </wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

 </wst:RequestedAttachedReference>

 <wst:RequestedUnattachedReference>

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentifier ValueType="http://docs.oasis-open.org/wss/

oasis-wss-saml-token-profile-1.0#SAMLAssertionID">

 uuid:17e2007e-f959-4624-85ef-ae00df6fe071

 </wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

 </wst:RequestedUnattachedReference>

 <wst:RequestedProofToken>

 <wst:ComputedKey>

 http://schemas.xmlsoap.org/ws/2005/02/trust/CK/PSHA1

 </wst:ComputedKey>

 </wst:RequestedProofToken>

 <wst:Entropy>

 <wst:BinarySecret Type="http://.../ws/2005/02/trust/Nonce">

 u+Qe3WdkFYqZsfwT9ZU6qTu9LqIYtwNz

 </wst:BinarySecret>

 </wst:Entropy>

 <wst:KeyType>

 http://schemas.xmlsoap.org/ws/2005/02/trust/SymmetricKey

 </wst:KeyType>

 <wst:KeySize>256</wst:KeySize>

 <ic:RequestedDisplayToken>

 <ic:DisplayToken xml:lang="en-us">

 <ic:DisplayClaim Uri=”http://.../identity/claims/givenname”>

 <ic:DisplayTag>Given Name</ic:DisplayTag>

 <ic:DisplayValue>John</ic:DisplayValue>

 </ic:DisplayClaim>

 <ic:DisplayClaim Uri="http://.../identity/claims/surname">

 <ic:DisplayTag>Last Name</ic:DisplayTag>

 <ic:DisplayValue>Doe</ic:DisplayValue>

Version 1.5 Page 48 of 83

 </ic:DisplayClaim>

 </ic:DisplayToken>

 </ic:RequestedDisplayToken>

 </wst:RequestSecurityTokenResponse>

 </S:Body>

</S:Envelope>

Note the following in the response message:

 The response is sent over HTTPS.

 The issued Security Token is encrypted to the Relying Party since information about

the Relying Party and its identity token were conveyed in the request.

 Since the SAML token doesn‟t support references using URI fragments (XML Id),

attached and unattached references are returned whose element content can be

used verbatim within a wsse:SecurityTokenReference element to reference the

token when it is placed inside a message.

 A symmetric proof key, based on client and server entropies, is returned.

 A Display Token containing textual representation of the actual token is returned.

5.3. Authenticating with KerberosV5 Service Ticket

The Identity Provider requires that the Service Requester submit a Kerberos v5 service

ticket as the credential to authenticate to the IP/STS when requesting tokens.

5.3.1. Credential Format

No explicit user credential needs to be specified in this case as it is implied by the Kerberos

realm that the user logs into. The credential descriptor format for Kerberos v5 defined in

[ISIP] has the following form:

<ic:UserCredential>

 <ic:KerberosV5Credential />

</ic:UserCredential>

To enable the Service Requester to obtain a Kerberos v5 service ticket for the IP/STS, the

endpoint reference of the IP/STS in the Information Card or in the metadata retrieved from

it must include a “service principal name” identity claim under the wsid:Identity tag as

defined in [Addressing-Ext]. An example is shown below.

<wsa:EndpointReference>

 <wsa:Address>http://contoso.com/sts</wsa:Address>

 <wsid:Identity>

 <wsid:Spn>host/corp-sts.contoso.com</wsid:Spn>

 </wsid:Identity>

</wsa:EndpointReference>

The KDC in the appropriate domain/realm can identify the IP/STS service account based on

the service principal name information and issue the required service ticket. This would

typically be used in enterprise intranet scenarios.

5.3.2. Security Policy

Message security using the “symmetric binding” should be used for token requests using

this authentication method. The content of the sp:ProtectionToken assertion in Security

Policy shown in Section 5.1.1.2 should be replaced by the partial policy fragment shown

below.

Version 1.5 Page 49 of 83

Protection token assertion in Security Policy:

<sp:ProtectionToken>

 <wsp:Policy>

 <sp:KerberosToken

sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/Include

Token/Once">

 <wsp:Policy>

 <sp:WssGssKerberosV5ApReqToken11/>

 </wsp:Policy>

 </sp:KerberosToken>

 </wsp:Policy>

</sp:ProtectionToken>

Since the Kerberos token already carries a symmetric session key that can be used as the

basis for message security, no separate authentication token assertion in Security Policy is

required in this case.

5.3.3. Message Exchange

This section provides the SOAP message exchanges when message security with “symmetric

binding” is used by the IP/STS. For this Security Binding, message protection and security

correlation for the request and response legs of the message exchange is provided by the

symmetric session key in the attached KerberosV5 service ticket. Message integrity and

confidentiality is governed by the policy attached to individual messages as described in

Section 5.1.1.2.

The following SOAP messages show the request/response exchange when message security

is used. The exchange when transport security is used is shown in the earlier section for the

username/password credential type.

Token request from Service Requester to IP/STS:

<S:Envelope ...>

 <S:Header>

 <wsa:Action wsu:Id="_1">

 http://schemas.xmlsoap.org/ws/2005/02/trust/RST/Issue

 </wsa:Action>

 <wsa:MessageID wsu:Id="_2">

 urn:uuid:eb9e1c77-0cea-4f2f-a586-78c15536137c

 </wsa:MessageID>

 <wsa:To wsu:Id="_3">http://contoso.com/sts</wsa:To>

 <wsa:ReplyTo wsu:Id="_4">

 <wsa:Address>

 http://www.w3.org/2005/08/addressing/anonymous

 </wsa:Address>

 </wsa:ReplyTo>

 <wsse:Security S:mustUnderstand="1">

 <wsu:Timestamp wsu:Id="_6">

 <wsu:Created>2004-10-18T09:02:00Z</wsu:Created>

 <wsu:Expires>2004-10-18T09:12:00Z</wsu:Expires>

 </wsu:Timestamp>

 <!-- Kerberosv5 service ticket as authentication token -->

 <wsse:BinarySecurityToken wsu:Id="_30"

 ValueType="http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-

profile-1.1#GSS_Kerberosv5_AP_REQ"

 EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-

wss-soap-message-security-1.0#Base64Binary">

 MIIEZzCCA9CgAwIBAgIQEmtJZc0==

Version 1.5 Page 50 of 83

 </wsse:BinarySecrityToken>

 <!-- List of encrypted elements in the message per

 message confidentiality policy -->

 <xenc:ReferenceList>

 <xenc:DataReference URI="#_20" />

 </xenc:ReferenceList>

 <!—Signature using the Kerberosv5 service ticket -->

 <ds:Signature wsu:Id="_33">

 <ds:SignedInfo>

 <ds:CanonicalizationMethod

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

 <ds:SignatureMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#hmac-sha1" />

 <ds:Reference URI="#_6">...</ds:Reference>

 <ds:Reference URI="#_1">...</ds:Reference>

 <ds:Reference URI="#_2">...</ds:Reference>

 <ds:Reference URI="#_3">...</ds:Reference>

 <ds:Reference URI="#_4">...</ds:Reference>

 <ds:Reference URI="#_10">...</ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>...</ds:SignatureValue>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#_30"

 ValueType="http://docs.oasis-open.org/wss/oasis-wss-kerberos-

token-profile-1.1#GSS_Kerberosv5_AP_REQ"/>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </ds:Signature>

 </wsse:Security>

 </S:Header>

 <S:Body wsu:Id="_10">

 <!-- Start encrypted Content

 <wst:RequestSecurityToken>

 <wst:TokenType>urn:oasis:names:tc:SAML:1.0:assertion</wst:TokenType>

 <wst:RequestType>

 http://schemas.xmlsoap.org/ws/2005/02/trust/Issue

 </wst:RequestType>

 <wst:KeyType>

 http://schemas.xmlsoap.org/ws/2005/02/trust/SymmetricKey

 </wst:KeyType>

 <wst:KeySize>256</wst:KeySize>

 <wst:Entropy>

 <wst:BinarySecret>mQlxWxEifnHgQpylcD7LYSkJplpE=</wst:BinarySecret>

 </wst:Entropy>

 <wsp:AppliesTo>

 <wsa:EndpointReference>

 <wsa:Address>http://www.relying-party.com</wsa:Address>

 <wsid:Identity>...</wsid:Identity>

 </wsa:EndpointReference>

 </wsp:AppliesTo>

 <ic:InformationCardReference>

 <ic:CardId> http://contoso.com/id/d795621fa01d454285f9</ic:CardId>
 </ic:InformationCardReference>

 <wst:Claims

 wst:Dialect="http://schemas.xmlsoap.org/ws/2005/05/identity">

 <ic:ClaimType Uri="http://.../identity/claims/givenname"/>

Version 1.5 Page 51 of 83

 <ic:ClaimType Uri="http://.../identity/claims/surname"/>

 </wst:Claims>

 <ic:RequestDisplayToken xml:lang="en-us" />

 </wst:RequestSecurityToken>

 End encrypted content -->

 <xenc:EncryptedData Id="_20">

 <xenc:EncryptionMethod

 Algorithm="http://www.w3.org/2001/04/xmlenc#aes256-cbc" />

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#_30"

 ValueType="http://docs.oasis-open.org/wss/oasis-wss-kerberos-

token-profile-1.1#GSS_Kerberosv5_AP_REQ"/>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>...</xenc:CipherValue>

 </xenc:CipherData>

 </xenc:EncryptedData>

 </S:Body>

</S:Envelope>

Note the following in the request message:

 The ordering of items in the security header follows the strict layout as prescribed by

WS-SecurityPolicy.

 A symmetric proof key is requested for which client-entropy is included.

 Relying Party information in the form of an endpoint reference and its identity token

is communicated to the IP/STS via the wsp:AppliesTo element (the example shown

assumes that the IP/STS specified the ic:RequireAppliesTo assertion in the

Information Card).

 The Information Card reference (CardId) is included.

 A Display Token localized in “US English” is requested.

 The Kerberos service ticket is included as a binary Security Token in the SOAP

security header.

 The message is signed with the session key in the Kerberos service ticket; but the

service ticket itself is NOT included within the scope of the message signature.

 Encrypted message elements are encrypted with the session key in the Kerberos

service ticket.

 References to the Kerberos service ticket included in the message are made using

the wsse:Reference based direct reference.

Token response from IP/STS to Service Requester:

<S:Envelope ...>

 <S:Header>

 <wsa:Action wsu:Id="_1">

 http://schemas.xmlsoap.org/ws/2005/02/trust/RSTR/Issue

 </wsa:Action>

 <wsa:RelatesTo wsu:Id="_2">

 urn:uuid:eb9e1c77-0cea-4f2f-a586-78c15536137c

 </wsa:RelatesTo>

 <wsa:To wsu:Id="_3">

Version 1.5 Page 52 of 83

 http://www.w3.org/2005/08/addressing/anonymous

 </wsa:To>

 <wsse:Security S:mustUnderstand="1">

 <wsu:Timestamp wsu:Id="_6">

 <wsu:Created>2004-10-18T09:02:00Z</wsu:Created>

 <wsu:Expires>2004-10-18T09:12:00Z</wsu:Expires>

 </wsu:Timestamp>

 <!-- List of encrypted elements in the message per

 message confidentiality policy -->

 <xenc:ReferenceList>

 <xenc:DataReference URI="#_20" />

 </xenc:ReferenceList>

 <!-- Signature using the Kerberosv5 service ticket -->

 <ds:Signature wsu:Id="_33">

 <ds:SignedInfo>

 <ds:CanonicalizationMethod

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

 <ds:SignatureMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#hmac-sha1" />

 <ds:Reference URI="#_6">...</ds:Reference>

 <ds:Reference URI="#_1">...</ds:Reference>

 <ds:Reference URI="#_2">...</ds:Reference>

 <ds:Reference URI="#_3">...</ds:Reference>

 <ds:Reference URI="#_10">...</ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>...</ds:SignatureValue>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentfier

 ValueType="http://docs.oasis-open.org/wss/oasis-wss-kerberos-

token-profile-1.1#Kerberosv5APREQSHA1">

 xqBw9N99tkxs4UH2TvyD06Ikj5k=

 </wsse:KeyIdentfier>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </ds:Signature>

 </wsse:Security>

 </S:Header>

 <S:Body wsu:Id="_10">

 <!-- Start encrypted Content

 <wst:RequestSecurityTokenResponse>

 <wst:TokenType>

 urn:oasis:names:tc:SAML:1.0:assertion

 </wst:TokenType>

 <wst:Lifetime>

 <wsu:Created>2004-10-18T09:02:00Z</wsu:Created>

 <wsu:Expires>2004-10-18T09:12:00Z</wsu:Expires>

 </wst:Lifetime>

 <wst:RequestedSecurityToken>

 <!-- Start encrypted token

 <saml:Assertion xmlns="urn:oasis:names:tc:SAML:1.1:assertion"

 AssertionID="uuid:17e2007e-f959-4624-85ef-ae00df6fe071" ...>

 ...

 </saml:Assertion>

 End encrypted token -->

 <xenc:EncryptedData Type="http://www.w3.org/2001/04/xmlenc#Element">

 <xenc:EncryptionMethod

Version 1.5 Page 53 of 83

 Algorithm="http://www.w3.org/2001/04/xmlenc#aes256-cbc"/>

 <ds:KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">

 <xenc:EncryptedKey>

 <xenc:EncryptionMethod

 Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p">

 <ds:DigestMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 </xenc:EncryptionMethod

 <ds:KeyInfo>

 <!-- token encryption key is encrypted to certificate

 of Relying Party -->

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentifier

 ValueType="http://docs.oasis-open.org/wss/2004/xx/oasis-

2004xx-wss-soap-message-security-1.1#ThumbprintSHA1"

 EncodingType="http://docs.oasis-

open.org/wss/2004/01/oasis200401-wss-soap-message-security-1.0#Base64Binary">

 +PYbznDaB/dlhjIfqCQ458E72wA=

 </wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>...</xenc:CipherValue>

 </xenc:CipherData>

 </xenc:EncryptedKey>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>...</xenc:CipherValue>

 </CipherData>

 </EncryptedData>

 </wst:RequestedSecurityToken>

 <wst:RequestedAttachedReference>

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentifier ValueType="http://docs.oasis-open.org/wss/

oasis-wss-saml-token-profile-1.0#SAMLAssertionID">

 uuid:17e2007e-f959-4624-85ef-ae00df6fe071

 </wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

 </wst:RequestedAttachedReference>

 <wst:RequestedUnattachedReference>

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentifier ValueType="http://docs.oasis-open.org/wss/

oasis-wss-saml-token-profile-1.0#SAMLAssertionID">

 uuid:17e2007e-f959-4624-85ef-ae00df6fe071

 </wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

 </wst:RequestedUnattachedReference>

 <wst:RequestedProofToken>

 <wst:ComputedKey>

 http://schemas.xmlsoap.org/ws/2005/02/trust/CK/PSHA1

 </wst:ComputedKey>

 </wst:RequestedProofToken>

 <wst:Entropy>

 <wst:BinarySecret Type="http://.../ws/2005/02/trust/Nonce">

 u+Qe3WdkFYqZsfwT9ZU6qTu9LqIYtwNz

 </wst:BinarySecret>

 </wst:Entropy>

Version 1.5 Page 54 of 83

 <wst:KeyType>

 http://schemas.xmlsoap.org/ws/2005/02/trust/SymmetricKey

 </wst:KeyType>

 <wst:KeySize>256</wst:KeySize>

 <ic:RequestedDisplayToken>

 <ic:DisplayToken xml:lang="en-us">

 <ic:DisplayClaim Uri="http://.../identity/claims/givenname">

 <ic:DisplayTag>Given Name</ic:DisplayTag>

 <ic:DisplayValue>John</ic:DisplayValue>

 </ic:DisplayClaim>

 <ic:DisplayClaim Uri="http://.../identity/claims/surname">

 <ic:DisplayTag>Last Name</ic:DisplayTag>

 <ic:DisplayValue>Doe</ic:DisplayValue>

 </ic:DisplayClaim>

 </ic:DisplayToken>

 </ic:RequestedDisplayToken>

 </wst:RequestSecurityTokenResponse>

 End encrypted content -->

 <xenc:EncryptedData Id="_20">

 <xenc:EncryptionMethod

 Algorithm="http://www.w3.org/2001/04/xmlenc#aes256-cbc" />

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentfier

 ValueType="http://docs.oasis-open.org/wss/oasis-wss-kerberos-

token-profile-1.1#Kerberosv5APREQSHA1">

 xqBw9N99tkxs4UH2TvyD06Ikj5k=

 </wsse:KeyIdentfier>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>...</xenc:CipherValue>

 </xenc:CipherData>

 </xenc:EncryptedData>

 </S:Body>

</S:Envelope>

Note the following in the response message:

 The ordering of items in the security header follows the strict layout as prescribed by

WS-SecurityPolicy.

 The Kerberos service ticket is NOT included in the message. References to the

Kerberos token are made indirectly using a SHA1 thumbprint based key identifier

reference using the wsse:KeyIdentifier element.

 The message is signed with the session key in the Kerberos token.

 Encrypted message elements are encrypted with the key in the Kerberos token.

 The issued Security Token is encrypted to the Relying Party since information about

the Relying Party and its identity token were conveyed in the request.

 Since the SAML token doesn‟t support references using URI fragments (XML Id),

attached and unattached references are returned whose element content can be

used verbatim within a wsse:SecurityTokenReference element to reference the

token when it is placed inside a message.

 A symmetric proof key, based on client and server entropy is returned.

Version 1.5 Page 55 of 83

 A Display Token containing textual representation of the actual token is returned.

5.4. Authenticating with X.509v3 Certificate

The Identity Provider requires that the Service Requester submit an X.509 v3 certificate,

where the certificate and keys may be in a hardware-based smart card or a software-based

certificate, as the credential to authenticate to the IP/STS when requesting tokens.

5.4.1. Credential Format

To enable the Service Requester to locate the right X.509 certificate for use, the SHA1 hash

of the entire certificate (i.e., a certificate thumbprint) should be specified as the credential

descriptor in the Information Card. The thumbprint value can be used with the appropriate

platform-specific APIs (e.g. CAPI2 on Windows) to locate the certificate. When using a smart

card based credential, a textual hint should be included in the ic:DisplayCredentialHint

element of the credential type that will be used to prompt the user to insert the appropriate

smart card in the reader.

The credential descriptor format for hardware-based X.509 certificate defined in [ISIP] has

the following form:

<ic:UserCredential>

 <ic:DisplayCredentialHint>

 Please insert your corporate smart card

 </ic:DisplayCredentialHint>

 <ic:X509V3Credential>

 <ds:X509Data>

 <wsse:KeyIdentifier

 ValueType="http://docs.oasis-open.org/wss/oasis-wss-soap-message-

security-1.1#ThumbPrintSHA1"

 EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis200401-wss-

soap-message-security-1.0#Base64Binary">

 ... Thp8EqU0S+A4Qu+==

 </wsse:KeyIdentifier>

 </ds:X509Data>

 </ic:X509V3Credential>

</ic:UserCredential>

5.4.2. Security Policy

Message security using the “symmetric binding” should be used for token requests using

this authentication method. As an alternative, transport security using the “transport

binding” may also be used for token requests using this authentication method.

To enable the Service Requester to obtain the Security Token of the IP/STS for securing

messages, the endpoint reference of the IP/STS in the Information Card or in the WSDL

retrieved must include its X.509v3 certificate in the wsid:Identity tag as defined in

[Addressing-Ext].

The authentication token assertion in Security Policy that should be used inside the WSDL of

the IP/STS, as described in Section 5.1.1, is shown below. This token assertion can be used

regardless of whether transport binding (Section 5.1.1.1) or symmetric binding (Section

5.1.1.2) is used. The user‟s X.509v3 certificate is submitted as an endorsing supporting

token in the RST request

Authentication token assertion in Security Policy:

<sp:EndorsingSupportingTokens>

 <wsp:Policy>

Version 1.5 Page 56 of 83

 <sp:X509Token

sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/Include

Token/AlwaysToRecipient">

 <wsp:Policy>

 <sp:WssX509V3Token10/>

 </wsp:Policy>

 </sp:X509Token>

 </wsp:Policy>

</sp:EndorsingSupportingTokens>

5.4.3. Message Exchange

This section provides the SOAP message exchanges when message security with “symmetric

binding” is used by the IP/STS. For this Security Binding, message protection and security

correlation for the request and response legs of the message exchange is provided by an

ephemeral symmetric session key. Message integrity and confidentiality is governed by the

policy attached to individual messages as described in Section 5.1.1.2.

The following SOAP messages show the request/response exchange when message security

is used. The exchange when transport security is used is shown in the earlier section for the

username/password credential type.

Token request from Service Requester to IP/STS:

<S:Envelope ...>

 <S:Header>

 <wsa:Action wsu:Id="_1">

 http://schemas.xmlsoap.org/ws/2005/02/trust/RST/Issue

 </wsa:Action>

 <wsa:MessageID wsu:Id="_2">

 urn:uuid:eb9e1c77-0cea-4f2f-a586-78c15536137c

 </wsa:MessageID>

 <wsa:To wsu:Id="_3">http://contoso.com/sts</wsa:To>

 <wsa:ReplyTo wsu:Id="_4">

 <wsa:Address>

 http://www.w3.org/2005/08/addressing/anonymous

 </wsa:Address>

 </wsa:ReplyTo>

 <wsse:Security S:mustUnderstand="1">

 <wsu:Timestamp wsu:Id="_6">

 <wsu:Created>2004-10-18T09:02:00Z</wsu:Created>

 <wsu:Expires>2004-10-18T09:12:00Z</wsu:Expires>

 </wsu:Timestamp>

 <!-- Symmetric session key encrypted to the X.509 certificate

 of the IP/STS endpoint -->

 <xenc:EncryptedKey Id="_30">

 <xenc:EncryptionMethod

 Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p">

 <ds:DigestMethod Algorithm="http://.../2000/09/xmldsig#sha1"/>

 </xenc:EncryptionMethod>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentifier

 ValueType="http://docs.oasis-open.org/wss/oasis-wss-soap-

message-security-1.1#ThumbprintSHA1"

 EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-

200401-wss-soap-message-security-1.0#Base64Binary">

 +PYbznDaB/dlhjIfqCQ458E72wA=

Version 1.5 Page 57 of 83

 </wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>...</xenc:CipherValue>

 </xenc:CipherData>

 </xenc:EncryptedKey>

 <!-- List of encrypted elements in the message per the message

 confidentiality policy -->

 <xenc:ReferenceList>

 <xenc:DataReference URI="#_20" />

 </xenc:ReferenceList>

 <!-- X.509 certificate of the user as the endorsing token -->

 <wsse:BinarySecurityToken wsu:Id="_33"

 ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-secext-1.0#X509v3"

 EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-

wss-soap-message-security-1.0#Base64Binary">

 ...

 </wsse:BinarySecrityToken>

 <!-- Primary message signature using the symmetric session key -->

 <ds:Signature wsu:Id="_40">

 <ds:SignedInfo>

 <ds:CanonicalizationMethod

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

 <ds:SignatureMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#hmac-sha1" />

 <ds:Reference URI="#_6">...</ds:Reference>

 <ds:Reference URI="#_1">...</ds:Reference>

 <ds:Reference URI="#_2">...</ds:Reference>

 <ds:Reference URI="#_3">...</ds:Reference>

 <ds:Reference URI="#_4">...</ds:Reference>

 <ds:Reference URI="#_10">...</ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>...</ds:SignatureValue>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#_30"

 ValueType="http://docs.oasis-open.org/wss/oasis-wss-soap-

message-security-1.1#EncryptedKey" />

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </ds:Signature>

 <!-- Endorsing signature using the user’s X.509 certificate

 endorsing the primary message signature -->

 <ds:Signature wsu:Id="_43">

 <ds:SignedInfo>

 <ds:CanonicalizationMethod

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

 <ds:SignatureMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

 <ds:Reference URI="#_40">...</ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>...</ds:SignatureValue>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#_33"

Version 1.5 Page 58 of 83

 ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-

wss-wssecurity-secext-1.0#X509v3" />

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </ds:Signature>

 </wsse:Security>

 </S:Header>

 <S:Body wsu:Id="_10">

 <!-- Start encrypted Content

 <wst:RequestSecurityToken>

 <wst:TokenType>

 urn:oasis:names:tc:SAML:1.0:assertion

 </wst:TokenType>

 <wst:RequestType>

 http://schemas.xmlsoap.org/ws/2005/02/trust/Issue

 </wst:RequestType>

 <wst:KeyType>

 http://schemas.xmlsoap.org/ws/2005/02/trust/SymmetricKey

 </wst:KeyType>

 <wst:KeySize>256</wst:KeySize>

 <wst:Entropy>

 <wst:BinarySecret>mQlxWxEifnHgQpylcD7LYSkJplpE=</wst:BinarySecret>

 </wst:Entropy>

 <wsp:AppliesTo>

 <wsa:EndpointReference>

 <wsa:Address>http://www.relying-party.com</wsa:Address>

 <wsid:Identity>...</wsid:Identity>

 </wsa:EndpointReference>

 </wsp:AppliesTo>

 <ic:InformationCardReference>

 <ic:CardId>http://contoso.com/id/d795621fa01d454285f9</ic:CardId>

 </ic:InformationCardReference>

 <wst:Claims

 wst:Dialect="http://schemas.xmlsoap.org/ws/2005/05/identity">

 <ic:ClaimType Uri="http://.../identity/claims/givenname"/>

 <ic:ClaimType Uri="http://.../identity/claims/surname"/>

 </wst:Claims>

 <ic:RequestDisplayToken xml:lang="en-us" />

 </wst:RequestSecurityToken>

 End encrypted content -->

 <xenc:EncryptedData Id="_20">

 <xenc:EncryptionMethod

 Algorithm="http://www.w3.org/2001/04/xmlenc#aes256-cbc" />

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#_30"

 ValueType="http://docs.oasis-open.org/wss/oasis-wss-soap-

message-security-1.1#EncryptedKey" />

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>...</xenc:CipherValue>

 </xenc:CipherData>

 </xenc:EncryptedData>

 </S:Body>

</S:Envelope>

Version 1.5 Page 59 of 83

Note the following in the request message:

 The ordering of items in the security header follows the strict layout as prescribed by

WS-SecurityPolicy.

 A symmetric proof key is requested for which client-entropy is included.

 Relying Party information in the form of an endpoint reference and its identity token

is communicated to the IP/STS via the wsp:AppliesTo element (the example shown

assumes that the IP/STS specified the ic:RequireAppliesTo assertion in the

Information Card).

 The Information Card reference (CardId) is included.

 A Display Token localized in “US English” is requested.

 The X.509 certificate of the IP/STS is NOT included in the message. References to it

are made indirectly using a SHA1 thumbprint based key identifier reference using the

wsse:KeyIdentifier element since the sp:ProtectionToken assertion in the STS

policy includes the sp:RequireThumbprintReference policy assertion.

 An ephemeral symmetric session key is generated and encrypted to the X.509

certificate of the IP/STS endpoint. The message is signed with this symmetric session

key which constitutes the primary message signature.

 The primary message signature is further signed by the key in the user‟s X.509

certificate (endorsing signature) which is used to authenticate the user. The X.509

certificate itself is NOT covered by the message signature or the endorsing signature.

 The X.509 client certificate is included in its entirety in the SOAP security header

since the sp:EndorsingSupportingToken assertion in the IP/STS policy does not

include the sp:RequireThumbprintReference policy assertion.

 References to the encrypted session key and the X.509 certificates included in the

message are made using the wsse:Reference based direct references.

Token response from IP/STS to Service Requester:

<S:Envelope ...>

 <S:Header>

 <wsa:Action wsu:Id="_1">

 http://schemas.xmlsoap.org/ws/2005/02/trust/RSTR/Issue

 </wsa:Action>

 <wsa:RelatesTo wsu:Id="_2">

 urn:uuid:eb9e1c77-0cea-4f2f-a586-78c15536137c

 </wsa:RelatesTo>

 <wsa:To wsu:Id="_3">

 http://www.w3.org/2005/08/addressing/anonymous

 </wsa:To>

 <wsse:Security S:mustUnderstand="1">

 <wsu:Timestamp wsu:Id="_6">

 <wsu:Created>2004-10-18T09:02:00Z</wsu:Created>

 <wsu:Expires>2004-10-18T09:12:00Z</wsu:Expires>

 </wsu:Timestamp>

 <!-- List of encrypted elements in the message per

 message confidentiality policy -->

 <xenc:ReferenceList>

 <xenc:DataReference URI="#_20" />

 </xenc:ReferenceList>

 <!-- Message signature using the symmetric session key -->

Version 1.5 Page 60 of 83

 <ds:Signature wsu:Id="_33">

 <ds:SignedInfo>

 <ds:CanonicalizationMethod

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

 <ds:SignatureMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#hmac-sha1" />

 <ds:Reference URI="#_6">...</ds:Reference>

 <ds:Reference URI="#_1">...</ds:Reference>

 <ds:Reference URI="#_2">...</ds:Reference>

 <ds:Reference URI="#_3">...</ds:Reference>

 <ds:Reference URI="#_10">...</ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>...</ds:SignatureValue>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentifier

 ValueType="http://docs.oasis-open.org/wss/oasis-wss-soap-

message-security-1.1#EncryptedKeySHA1">

 AcLJ9234LIl2HbBwbpk0qBPhVZ8=

 </wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </ds:Signature>

 </wsse:Security>

 </S:Header>

 <S:Body wsu:Id="_10">

 <!-- Start encrypted Content

 <wst:RequestSecurityTokenResponse>

 <wst:TokenType>

 urn:oasis:names:tc:SAML:1.0:assertion

 </wst:TokenType>

 <wst:Lifetime>

 <wsu:Created>2004-10-18T09:02:00Z</wsu:Created>

 <wsu:Expires>2004-10-18T09:12:00Z</wsu:Expires>

 </wst:Lifetime>

 <wst:RequestedSecurityToken>

 <!-- Start encrypted token

 <saml:Assertion xmlns="urn:oasis:names:tc:SAML:1.1:assertion"

 AssertionID="uuid:17e2007e-f959-4624-85ef-ae00df6fe071" ...>

 ...

 </saml:Assertion>

 End encrypted token -->

 <xenc:EncryptedData Type="http://www.w3.org/2001/04/xmlenc#Element">

 <xenc:EncryptionMethod

 Algorithm="http://www.w3.org/2001/04/xmlenc#aes256-cbc"/>

 <ds:KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">

 <xenc:EncryptedKey>

 <xenc:EncryptionMethod

 Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p">

 <ds:DigestMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 </xenc:EncryptionMethod

 <ds:KeyInfo>

 <!-- token encryption key is encrypted to certificate

 of Relying Party -->

 <wsse:SecurityTokenReference>

Version 1.5 Page 61 of 83

 <wsse:KeyIdentifier

 ValueType="http://docs.oasis-open.org/wss/2004/xx/oasis-

2004xx-wss-soap-message-security-1.1#ThumbprintSHA1"

 EncodingType="http://docs.oasis-

open.org/wss/2004/01/oasis200401-wss-soap-message-security-1.0#Base64Binary">

 +PYbznDaB/dlhjIfqCQ458E72wA=

 </wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>...</xenc:CipherValue>

 </xenc:CipherData>

 </xenc:EncryptedKey>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>...</xenc:CipherValue>

 </CipherData>

 </EncryptedData>

 </wst:RequestedSecurityToken>

 <wst:RequestedAttachedReference>

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentifier ValueType="http://docs.oasis-open.org/wss/

oasis-wss-saml-token-profile-1.0#SAMLAssertionID">

 uuid:17e2007e-f959-4624-85ef-ae00df6fe071

 </wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

 </wst:RequestedAttachedReference>

 <wst:RequestedUnattachedReference>

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentifier ValueType="http://docs.oasis-open.org/wss/

oasis-wss-saml-token-profile-1.0#SAMLAssertionID">

 uuid:17e2007e-f959-4624-85ef-ae00df6fe071

 </wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

 </wst:RequestedUnattachedReference>

 <wst:RequestedProofToken>

 <wst:ComputedKey>

 http://schemas.xmlsoap.org/ws/2005/02/trust/CK/PSHA1

 </wst:ComputedKey>

 </wst:RequestedProofToken>

 <wst:Entropy>

 <wst:BinarySecret Type="http://.../ws/2005/02/trust/Nonce">

 u+Qe3WdkFYqZsfwT9ZU6qTu9LqIYtwNz

 </wst:BinarySecret>

 </wst:Entropy>

 <wst:KeyType>

 http://schemas.xmlsoap.org/ws/2005/02/trust/SymmetricKey

 </wst:KeyType>

 <wst:KeySize>256</wst:KeySize>

 <ic:RequestedDisplayToken>

 <ic:DisplayToken xml:lang="en-us">

 <ic:DisplayClaim Uri="http://.../identity/claims/givenname">

 <ic:DisplayTag>Given Name</ic:DisplayTag>

 <ic:DisplayValue>John</ic:DisplayValue>

 </ic:DisplayClaim>

 <ic:DisplayClaim Uri="http://.../identity/claims/surname">

 <ic:DisplayTag>Last Name</ic:DisplayTag>

Version 1.5 Page 62 of 83

 <ic:DisplayValue>Doe</ic:DisplayValue>

 </ic:DisplayClaim>

 </ic:DisplayToken>

 </ic:RequestedDisplayToken>

 </wst:RequestSecurityTokenResponse>

 End encrypted content -->

 <xenc:EncryptedData Id="_20">

 <xenc:EncryptionMethod

 Algorithm="http://www.w3.org/2001/04/xmlenc#aes256-cbc" />

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentifier

 ValueType="http://docs.oasis-open.org/wss/oasis-wss-soap-message-

security-1.1#EncryptedKeySHA1">

 AcLJ9234LIl2HbBwbpk0qBPhVZ8=

 </wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>...</xenc:CipherValue>

 </xenc:CipherData>

 </xenc:EncryptedData>

 </S:Body>

</S:Envelope>

Note the following in the response message:

 The ordering of items in the security header follows the strict layout as prescribed by

WS-SecurityPolicy.

 The message is signed with the symmetric session key that was included in the RST

request. Encrypted message elements are encrypted with the same symmetric

session key.

 References to the symmetric session key, which is NOT included in the message, are

made indirectly using a SHA1 thumbprint based key identifier reference using the

wsse:KeyIdentifier element.

 The issued Security Token is encrypted to the Relying Party since information about

the Relying Party and its identity token were conveyed in the request.

 Since the SAML token doesn‟t support references using URI fragments (XML Id),

attached and unattached references are returned whose element content can be

used verbatim within a wsse:SecurityTokenReference element to reference the

token when it is placed inside a message.

 A symmetric proof key, based on client and server entropies, is returned.

 A Display Token containing textual representation of the actual token is returned.

5.5. Authenticating with Self-issued Token

The Identity Provider requires that the Service Requester submit a self-issued SAML token

as the credential to authenticate to the IP/STS when requesting tokens.

5.5.1. Credential Format

To enable the Service Requester to locate the right self-issued Information Card as the

credential, the PPID value that identifies the user at the IP/STS should be specified as the

Version 1.5 Page 63 of 83

credential descriptor in the Information Card. The PPID value can be used to locate the self-

issued Information Card which produces that value for the IP/STS.

The credential descriptor format for self-issued token defined in [ISIP] has the following

form. The PPID is specified as the value of the ic:PrivatePersonalIdentifier element.

<ic:UserCredential>

 <ic:SelfIssuedCredential>

 <ic:PrivatePersonalIdentifier>

 xqh78FgyuThp8EqU0S+A4Qu+=

 </ic:PrivatePersonalIdentifier>

 </ic:SelfIssuedCredential>

</ic:UserCredential>

5.5.2. Security Policy

Message security using the “symmetric binding” should be used for token requests using

this authentication method. As an alternative, transport security using the “transport

binding” may also be used for token requests using this authentication method.

To enable the Service Requester to obtain the Security Token of the IP/STS for securing

messages, the endpoint reference of the IP/STS in the Information Card or in the WSDL

retrieved must include its X.509v3 certificate in the wsid:Identity tag as defined in

[Addressing-Ext].

The authentication token assertion in Security Policy that should be used inside the WSDL of

the IP/STS, as described in Section 5.1.1, is shown below. This token assertion can be used

regardless of whether transport binding (Section 5.1.1.1) or symmetric binding (Section

5.1.1.2) is used. The user‟s self-issued token is submitted as an endorsing supporting token

in the RST request

Authentication token assertion in Security Policy:

<sp:EndorsingSupportingTokens>

 <wsp:Policy>

 <sp:IssuedToken sp:IncludeToken="http://schemas.xmlsoap.org/ws/

2005/07/securitypolicy/IncludeToken/AlwaysToRecipient">

 <sp:Issuer>

 <wsa:Address>

 http://schemas.xmlsoap.org/ws/2005/05/identity/issuer/self

 </wsa:Address>

 </sp:Issuer>

 <sp:RequestSecurityTokenTemplate>

 <wst:TokenType>

 urn:oasis:names:tc:SAML:1.0:assertion

 </wst:TokenType>

 <wst:KeyType>

 http://schemas.xmlsoap.org/ws/2005/02/trust/PublicKey

 </wst:KeyType>

 <wst:Claims>

 <ic:ClaimType

Uri="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/privatepersonalide

ntifier"/>

 </wst:Claims>

 </sp:RequestSecurityTokenTemplate>

 <wsp:Policy>

 <sp:RequireInternalReference/>

 </wsp:Policy>

 </sp:IssuedToken>

Version 1.5 Page 64 of 83

 </wsp:Policy>

</sp:EndorsingSupportingTokens>

5.5.3. Message Exchange

This section provides the SOAP message exchanges when message security with “symmetric

binding” is used by the IP/STS. For this Security Binding, message protection and security

correlation for the request and response legs of the message exchange is provided by an

ephemeral symmetric session key. Message integrity and confidentiality is governed by the

policy attached to individual messages as described in Section 5.1.

The following SOAP messages show the request/response exchange when message security

is used (see policy for message security specified in the previous section). The exchange

when transport security is used is shown in an earlier section for the username/password

credential type.

This exchange also shows the use of the wst:UseKey element to request a token with an

asymmetric proof key.

Token request from Service Requester to IP/STS:

<S:Envelope ...>

 <S:Header>

 <wsa:Action wsu:Id="_1">

 http://schemas.xmlsoap.org/ws/2005/02/trust/RST/Issue

 </wsa:Action>

 <wsa:MessageID wsu:Id="_2">

 urn:uuid:eb9e1c77-0cea-4f2f-a586-78c15536137c

 </wsa:MessageID>

 <wsa:To wsu:Id="_3">http://contoso.com/sts</wsa:To>

 <wsa:ReplyTo wsu:Id="_4">

 <wsa:Address>

 http://www.w3.org/2005/08/addressing/anonymous

 </wsa:Address>

 </wsa:ReplyTo>

 <wsse:Security S:mustUnderstand="1">

 <wsu:Timestamp wsu:Id="_6">

 <wsu:Created>2004-10-18T09:02:00Z</wsu:Created>

 <wsu:Expires>2004-10-18T09:12:00Z</wsu:Expires>

 </wsu:Timestamp>

 <!-- Symmetric session key encrypted to the X.509 certificate

 of the IP/STS endpoint -->

 <xenc:EncryptedKey Id="_30">

 <xenc:EncryptionMethod

 Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p">

 <ds:DigestMethod Algorithm="http://.../2000/09/xmldsig#sha1"/>

 </xenc:EncryptionMethod>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentifier

 ValueType="http://docs.oasis-open.org/wss/oasis-wss-soap-

message-security-1.1#ThumbprintSHA1"

 EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-

200401-wss-soap-message-security-1.0#Base64Binary">

 +PYbznDaB/dlhjIfqCQ458E72wA=

 </wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

Version 1.5 Page 65 of 83

 <xenc:CipherData>

 <xenc:CipherValue>...</xenc:CipherValue>

 </xenc:CipherData>

 </xenc:EncryptedKey>

 <!-- List of encrypted elements in the message per the message

 confidentiality policy -->

 <xenc:ReferenceList>

 <xenc:DataReference URI="#_20" />

 </xenc:ReferenceList>

 <!-- Self-issued SAML token of the user encrypted to the IP/STS

 as the endorsing token -->

 <!-- Start encrypted Content (self-issued SAML token)

 <saml:Assertion xmlns="urn:oasis:names:tc:SAML:1.0:assertion" ...

 AssertionID=" uuid:17e2007e-f959-4624-85ef-ae00df6fe071" ...>
 ...

 </saml:Assertion>

 End encrypted content -->

 <xenc:EncryptedData>

 ...

 <xenc:CipherData>

 <xenc:CipherValue>...</xenc:CipherValue>

 </xenc:CipherData>

 </xenc:EncryptedData>

 <!-- Primary message signature using the symmetric session key -->

 <ds:Signature wsu:Id="_40">

 <ds:SignedInfo>

 <ds:CanonicalizationMethod

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

 <ds:SignatureMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#hmac-sha1" />

 <ds:Reference URI="#_6">...</ds:Reference>

 <ds:Reference URI="#_1">...</ds:Reference>

 <ds:Reference URI="#_2">...</ds:Reference>

 <ds:Reference URI="#_3">...</ds:Reference>

 <ds:Reference URI="#_4">...</ds:Reference>

 <ds:Reference URI="#_10">...</ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>...</ds:SignatureValue>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#_30"

 ValueType="http://docs.oasis-open.org/wss/oasis-wss-soap-

message-security-1.1#EncryptedKey" />

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </ds:Signature>

 <!-- Endorsing signature using the user’s self-issued SAML token

 endorsing the primary message signature -->

 <ds:Signature wsu:Id="_43">

 <ds:SignedInfo>

 <ds:CanonicalizationMethod

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

 <ds:SignatureMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

 <ds:Reference URI="#_40">...</ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>...</ds:SignatureValue>

Version 1.5 Page 66 of 83

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentifier ValueType="http://docs.oasis-open.org/wss/

oasis-wss-saml-token-profile-1.0#SAMLAssertionID">

 uuid:17e2007e-f959-4624-85ef-ae00df6fe071

 </wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </ds:Signature>

 <!-- Endorsing signature proving possession of the private key

 corresponding to the public key requested as proof key;

 KeyInfo within the signature contains the public key to be

 used as proof key in the issued token -->

 <ds:Signature wsu:Id="_46">

 <ds:SignedInfo>

 <ds:CanonicalizationMethod

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

 <ds:SignatureMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

 <ds:Reference URI="#_40">...</ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>...</ds:SignatureValue>

 <ds:KeyInfo>

 <ds:KeyValue>

 <ds:RSAKeyValue>

 <ds:Modulus>...</ds:Modulus>

 <ds:Exponent>...</ds:Exponent>

 </ds:RSAKeyValue>

 </ds:KeyValue>

 </ds:KeyInfo>

 </ds:Signature>

 </wsse:Security>

 </S:Header>

 <S:Body wsu:Id="_10">

 <!-- Start encrypted Content

 <wst:RequestSecurityToken>

 <wst:TokenType>

 urn:oasis:names:tc:SAML:1.0:assertion

 </wst:TokenType>

 <wst:RequestType>

 http://schemas.xmlsoap.org/ws/2005/02/trust/Issue

 </wst:RequestType>

 <wst:KeyType>

 http://schemas.xmlsoap.org/ws/2005/02/trust/PublicKey

 </wst:KeyType>

 <ic:InformationCardReference>

 <ic:CardId> http://contoso.com/id/d795621fa01d454285f9</ic:CardId>
 </ic:InformationCardReference>

 <wst:Claims

 wst:Dialect="http://schemas.xmlsoap.org/ws/2005/05/identity">

 <ic:ClaimType Uri="http://.../identity/claims/givenname"/>

 <ic:ClaimType Uri="http://.../identity/claims/surname"/>

 </wst:Claims>

 <ic:ClientPseudonym>

 <ic:PPID>NHbuoB4KVKuvUx7b8szaux+bM8Rr0rPTPOXQlQTEBAo=</ic:PPID>

 </ic:ClientPseudonym>

Version 1.5 Page 67 of 83

 <wst:UseKey Sig="#_46">

 <ds:KeyInfo>

 <ds:KeyValue>

 <ds:RSAKeyValue>

 <ds:Modulus>...</ds:Modulus>

 <ds:Exponent>...</ds:Exponent>

 </ds:RSAKeyValue>

 </ds:KeyValue>

 </ds:KeyInfo>

 </wst:UseKey>

 <ic:RequestDisplayToken xml:lang="en-us" />

 </wst:RequestSecurityToken>

 End encrypted content -->

 <xenc:EncryptedData Id="_20">

 <xenc:EncryptionMethod

 Algorithm="http://www.w3.org/2001/04/xmlenc#aes256-cbc" />

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#_30"

 ValueType="http://docs.oasis-open.org/wss/oasis-wss-soap-message-

security-1.1#EncryptedKey" />

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>Thp8EqU0S+A4Qu+==</xenc:CipherValue>

 </xenc:CipherData>

 </xenc:EncryptedData>

 </S:Body>

</S:Envelope>

Note the following in the request message:

 The ordering of items in the security header follows the strict layout as prescribed by

WS-SecurityPolicy.

 An asymmetric proof key is requested, and the public key to be used as proof key is

included in the wst:UseKey element in the SOAP body as a raw RSA key. Further,

proof-of-possession of the corresponding private key is included via a signature in

the SOAP security header (see signature element with wsu:Id=“_46”). The signature

also includes the same RSA key that is in the wst:UseKey element in the SOAP body.

The IP/STS should verify that the RSA key included in the wst:UseKey element and

in the proof-of-possession signature are the same before accepting it.

 The Information Card reference (CardId) is included.

 Information about the Relying Party is not included (i.e. there is no wsp:AppliesTo

element).

 A client generated PPID seed is included in the ic:PPID element for the IP/STS to

use in generating any pair-wise identifiers.

 A Display Token localized in “US English” is requested.

 The X.509 certificate of the IP/STS is NOT included in the message. References to it

are made indirectly using a SHA1 thumbprint based key identifier reference using the

wsse:KeyIdentifier element since the sp:ProtectionToken assertion in the STS

policy includes the sp:RequireThumbprintReference policy assertion.

Version 1.5 Page 68 of 83

 An ephemeral symmetric session key is generated and encrypted to the X.509

certificate of the IP/STS endpoint. References to the encrypted session key included

in the SOAP security header are made using the wsse:Reference based direct

references.

 The message is signed with this symmetric session key which constitutes the primary

message signature. Encrypted message elements are encrypted with the symmetric

session key as well.

 The primary message signature is further signed by the key in the user‟s self-issued

SAML token (endorsing signature) which is used to authenticate the user. The SAML

token itself is NOT covered by the message signature or the endorsing signature.

 The self-issued SAML token is included in its entirety in the SOAP security header.

References to the self-issued SAML token included in the message are made using

the assertion ID using the wsse:KeyIdentifier element.

Token response from IP/STS to Service Requester:

<S:Envelope ...>

 <S:Header>

 <wsa:Action wsu:Id="_1">

 http://schemas.xmlsoap.org/ws/2005/02/trust/RSTR/Issue

 </wsa:Action>

 <wsa:RelatesTo wsu:Id="_2">

 urn:uuid:eb9e1c77-0cea-4f2f-a586-78c15536137c

 </wsa:RelatesTo>

 <wsa:To wsu:Id="_3">

 http://www.w3.org/2005/08/addressing/anonymous

 </wsa:To>

 <wsse:Security S:mustUnderstand="1">

 <wsu:Timestamp wsu:Id="_6">

 <wsu:Created>2004-10-18T09:02:00Z</wsu:Created>

 <wsu:Expires>2004-10-18T09:12:00Z</wsu:Expires>

 </wsu:Timestamp>

 <!-- List of encrypted elements in the message per

 message confidentiality policy -->

 <xenc:ReferenceList>

 <xenc:DataReference URI="#_20" />

 </xenc:ReferenceList>

 <!-- Message signature using the symmetric session key -->

 <ds:Signature wsu:Id="_33">

 <ds:SignedInfo>

 <ds:CanonicalizationMethod

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

 <ds:SignatureMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#hmac-sha1" />

 <ds:Reference URI="#_6">...</ds:Reference>

 <ds:Reference URI="#_1">...</ds:Reference>

 <ds:Reference URI="#_2">...</ds:Reference>

 <ds:Reference URI="#_3">...</ds:Reference>

 <ds:Reference URI="#_10">...</ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>...</ds:SignatureValue>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentifier

Version 1.5 Page 69 of 83

 ValueType="http://docs.oasis-open.org/wss/oasis-wss-soap-

message-security-1.1#EncryptedKeySHA1">

 AcLJ9234LIl2HbBwbpk0qBPhVZ8=

 </wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </ds:Signature>

 </wsse:Security>

 </S:Header>

 <S:Body wsu:Id="_10">

 <!-- Start encrypted Content

 <wst:RequestSecurityTokenResponse>

 <wst:TokenType>

 urn:oasis:names:tc:SAML:1.0:assertion

 </wst:TokenType>

 <wst:Lifetime>

 <wsu:Created>2004-10-18T09:02:00Z</wsu:Created>

 <wsu:Expires>2004-10-18T09:12:00Z</wsu:Expires>

 </wst:Lifetime>

 <wst:RequestedSecurityToken>

 <saml:Assertion xmlns="urn:oasis:names:tc:SAML:1.1:assertion"

 AssertionID="uuid:17e2007e-f959-4624-85ef-ae00df6fe071" ...>

 ...

 </saml:Assertion>

 </wst:RequestedSecurityToken>

 <wst:RequestedAttachedReference>

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentifier ValueType="http://docs.oasis-open.org/wss/

oasis-wss-saml-token-profile-1.0#SAMLAssertionID">

 uuid:17e2007e-f959-4624-85ef-ae00df6fe071

 </wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

 </wst:RequestedAttachedReference>

 <wst:RequestedUnattachedReference>

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentifier ValueType="http://docs.oasis-open.org/wss/

oasis-wss-saml-token-profile-1.0#SAMLAssertionID">

 uuid:17e2007e-f959-4624-85ef-ae00df6fe071

 </wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

 </wst:RequestedUnattachedReference>

 <wst:KeyType>

 http://schemas.xmlsoap.org/ws/2005/02/trust/PublicKey

 </wst:KeyType>

 <wst:KeySize>2048</wst:KeySize>

 <ic:RequestedDisplayToken>

 <ic:DisplayToken xml:lang="en-us">

 <ic:DisplayClaim Uri="http://.../identity/claims/givenname">

 <ic:DisplayTag>Given Name</ic:DisplayTag>

 <ic:DisplayValue>John</ic:DisplayValue>

 </ic:DisplayClaim>

 <ic:DisplayClaim Uri="http://.../identity/claims/surname">

 <ic:DisplayTag>Last Name</ic:DisplayTag>

 <ic:DisplayValue>Doe</ic:DisplayValue>

 </ic:DisplayClaim>

 </ic:DisplayToken>

Version 1.5 Page 70 of 83

 </ic:RequestedDisplayToken>

 </wst:RequestSecurityTokenResponse>

 End encrypted content -->

 <xenc:EncryptedData Id="_20">

 <xenc:EncryptionMethod

 Algorithm="http://www.w3.org/2001/04/xmlenc#aes256-cbc" />

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentifier

 ValueType="http://docs.oasis-open.org/wss/oasis-wss-soap-message-

security-1.1#EncryptedKeySHA1">

 AcLJ9234LIl2HbBwbpk0qBPhVZ8=

 </wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>...</xenc:CipherValue>

 </xenc:CipherData>

 </xenc:EncryptedData>

 </S:Body>

</S:Envelope>

Note the following in the response message:

 The ordering of items in the security header follows the strict layout as prescribed by

WS-SecurityPolicy.

 The message is signed with the symmetric session key that was included in the RST

request. Encrypted message elements are encrypted with the same symmetric

session key.

 References to the symmetric session key, which is NOT included in the message, are

made indirectly using a SHA1 thumbprint based key identifier reference using the

wsse:KeyIdentifier element.

 The issued Security Token is NOT encrypted to the Relying Party since information

about the Relying Party was not conveyed in the request.

 Since the SAML token doesn‟t support references using URI fragments (XML Id),

attached and unattached references are returned whose element content can be

used verbatim within a wsse:SecurityTokenReference element to reference the

token when it is placed inside a message.

 Since an asymmetric proof key was requested and an ephemeral public key was

supplied as the proof key in the token request, the response message does not

include an explicit proof token.

 A Display Token containing textual representation of the actual token is returned.

6. Faults

In addition to the standard faults described in WS-Addressing, WS-Security and WS-Trust,

the Identity Selector Interoperability Profile [ISIP] defines additional faults that may be

generated by the Relying Party or the Identity Provider.

6.1. Relying Party

[This Guide contains no content about the corresponding section of the Identity Selector

Interoperability Profile.]

Version 1.5 Page 71 of 83

6.2. Identity Provider

[This Guide contains no content about the corresponding section of the Identity Selector

Interoperability Profile.]

6.2.1. Identity Provider Custom Error Messages

Custom error messages may be returned as well for standard SOAP faults, such as

wsa:MissingAppliesTo.

Example:

<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope"

xmlns:a="http://www.w3.org/2005/08/addressing">

 <s:Header>

 <a:Action

s:mustUnderstand="1">http://www.w3.org/2005/08/addressing/soap/fault</a:Actio

n>

 <a:RelatesTo>urn:uuid:d4f0c1da-de45-426a-8c82-a06ecbb62dbd</a:RelatesTo>

 </s:Header>

 <s:Body>

 <s:Fault>

 <s:Code>

 <s:Value xmlns:a="http://www.w3.org.2003/05/soap-

envelope">a:Sender</s:Value>

 <s:Subcode>

 <s:Value

xmlns:a="http://schemas.xmlsoap.org/ws/2005/05/identity">a:MissingAppliesTo</

s:Value>

 </s:Subcode>

 </s:Code>

 <s:Reason>

 <s:Text xml:lang="en">Our record on file shows that you are not

authorized to use this service. If you have forgotten your user name or your

password, please visit http://www.contoso.com/help for further assistance.

You can also call (123) 456-7890 to speak with one of our customer care

representatives.</s:Text>

 </s:Reason>

 </s:Fault>

 </s:Body>

</s:Envelope>

7. Information Cards Transfer Format

When the Information Cards Transfer Format is serialized to a file, the “.crds” file extension

should be used for this file. The MIME type “application/x-informationCardBackup” should

be used for these files.

8. Simple Identity Provider Profile

8.1. Self-Issued Information Card

[This Guide contains no content about the corresponding section of the Identity Selector

Interoperability Profile.]

Version 1.5 Page 72 of 83

8.2. Self-Issued Token Characteristics

[This Guide contains no content about the corresponding section of the Identity Selector

Interoperability Profile.]

8.3. Self-Issued Token Encryption

[This Guide contains no content about the corresponding section of the Identity Selector

Interoperability Profile.]

8.4. Self-Issued Token Signing Key

[This Guide contains no content about the corresponding section of the Identity Selector

Interoperability Profile.]

8.5. Claim Types

[This Guide contains no content about the corresponding section of the Identity Selector

Interoperability Profile.]

8.6. The PPID Claim

8.6.1. Relying Party Identifier and Relying Party PPID Seed

8.6.1.1. Algorithm Change to Increase PPID and Signing Key Stability

The RP Identifier algorithm specified in [ISIP V1.0] uses the entire certificate chain as part

of the computation of the PPID for non-EV sites. In practice, this could cause a number of

problems. First, as sites renew their certificates, it is common for the certificate chain for

the new cert to differ from the old one. This would change the PPID, breaking the user‟s

self-issued cards at those sites. And of course, the chain always changes if the site changes

its certificate provider.

Second, because the algorithm for converting the bytes of the chain certificates into

characters was not fully specified by ISIP V1.0 for some OIDs, for some kinds of certificates

different Identity Selectors produced different results for the PPID claim, Signing Key, Client

Pseudonym PPID, and IP Identifier values.

Also, in ISIP V1.0, the PPID for a site using a non-EV certificate will change if the certificate

chain for the site changes, which can happen both when a certificate is re-issued prior to

expiration, and will always happen when a site changes certificate authorities. This means

that users‟ cards will stop working at sites where these certificate changes occur.

Finally, in ISIP V1.0, the PPID for a site using a non-EV certificate is different than the PPID

for a site that uses an EV certificate, even in the case where the non-EV leaf cert content

meets the EV issuance criteria. This means that when a site upgraded to using an EV

certificate, user‟s cards would stop working at that site.

Changes Made in ISIP V1.5

To address these issues, the computation of the RP Identifier for sites using regular (non-

EV) certificates where the certificate chain is trusted has been changed to no longer include

information from the certificate chain, but only information from the leaf certificate.

Furthermore, instead of using the RP Identifier value to compute both the PPID and the

Signing Key, separate related RP Identifier and RP PPID Seed values are computed, both

using only information from the leaf certificate, with the Signing Key being derived from the

RP Identifier and the PPID being derived from the RP PPID Seed.

Version 1.5 Page 73 of 83

The RP PPID Seed computation was changed to be identical to the RP Identifier computation

used in the EV certificate case, where information from the leaf certificate O, L, S, and C

values is used to compute the OrgIdString (from which the RP Identifier and RP PPID Seed

are derived). For instance, the OrgIdString for Microsoft‟s EV certificate is:

|O="Microsoft"|L="Redmond"|S="Washington"|C="US"|

To provide a migration path from non-EV to EV certs, the RP PPID Seed for a non-EV cert

containing the same OLSC values is the same as for an EV cert, resulting in the same PPID.

The PPID being the same can be used as evidence by the relying party that the user using

the card with the EV cert is likely the same as the one that generated the same PPID when

a non-EV cert was employed. With the new PPID algorithm, this evidence is now available

as a tool for Relying Parties, whereas it was not with the ISIP V1.0 algorithm.

However, to protect against compromises to non-EV certs enabling attacks against EV sites,

a different RP Identifier (and consequently different Signing Key) is generated for sites

using non-EV certs. To accomplish this, the string “|Non-EV” is prefixed to the OrgIdString

in the non-EV case. For instance, the QualifiedOrgIdString value used to derive the signing

key for a non-EV cert containing Microsoft‟s OSLC values is:

|Non-EV|O="Microsoft"|L="Redmond"|S="Washington"|C="US"|

If a site has changed from a non-EV cert to an EV cert, in summary, the PPID value will

remain the same but the singing key will change. While the PPID may be used as evidence

that an account is the same one as before the change, sites may choose to also collect

other evidence, if appropriate, to reach a sufficient level of confidence that the user is the

same one as before.

Additional Changes for Certificates without Organization Information

The ISIP V1.0 algorithm used the OLSC approach when any of O, L, S, or C values were

non-empty and the certificate was trusted. Upon reviewing this, it was decided that this

algorithm makes very little sense when the Organization is empty, as anyone could, in

theory, get a cert with the same L, S, and C values. Therefore, for trusted certificates

where O is empty and a non-empty CN value is present, the CN should be used when

computing PPIDs and Signing Keys. In this case, in the example where the CN value is

“server.contoso.com”, the OrgIDString is:

|CN="server.contoso.com"|

Finally, if both the O and CN are empty, the certificate‟s public key is used (which is the

same algorithm used when the certificate is not trusted).

Note that the Organization may never be empty for EV certificates, as per the CA Browser

Forum EV certificate content rules. Therefore, these cases only arise for standard

certificates.

8.6.2. PPID

[This Guide contains no content about the corresponding section of the Identity Selector

Interoperability Profile.]

8.6.3. Friendly Identifier

The PPID provides a site-specific identifier for the user that is meaningful to the site and is

suitable for programmatic processing. However, the PPID is not a good user-friendly

identifier for an Information Card in customer service situations where the user may need to

manually convey his/her site-specific identity (e.g., over the phone). It is difficult and

cumbersome for a user to manually convey a PPID which is a long case-sensitive (base64

Version 1.5 Page 74 of 83

encoded) string. We need an identifier for the card that makes sense to the user and is

convenient. Further, the identifier for the card should be consistent across a number of

devices (multiple PCs, telephones, etc.) to which the user carries the card.

An Identity Selector should use the simple scheme described in Section 8.6.3 of [ISIP] to

generate and display a friendly “Site-specific Card ID” for an Information Card in user

interfaces. Relying parties may also employ the same scheme to generate the user-friendly

site-specific card ID as a troubleshooting device when dealing with user problems.

The Site-specific Card ID has the following characteristics:

 It is never carried inside tokens. It is only computed as a function of the site-specific

PPID at either end.

 It is encoded as a 10-character alphanumeric string of the form “AAA-AAAA-AAA”

grouped into three groups separated by the „hyphen‟ character (e.g., the string

“6QR-97A4-WR5”). Note that the hyphens are used for punctuation only.

 The encoding alphabet does NOT use the numbers „0‟ and „1‟, and the letters „O‟ and

„I‟ to avoid confusion stemming from the similar glyphs used for these numbers and

characters. This leaves 8 digits and 24 letters – a total of 32 alphanumeric symbols –

as the alphabet for the encoding.

9. Relying Parties without Certificates

Without a certificate identifying the Relying Party, it is not possible to encrypt the token for

the RP. Thus claims are transmitted in the clear. If the claims themselves contain sensitive

information, this may not be acceptable for privacy reasons. That is why the

ic07:RequireStrongRecipientIdentity element is provided to let Identity Providers

restrict the usage of cards containing sensitive data to Relying Parties where encryption is

possible. Note that Identity Providers can also achieve this dynamically for auditing cards

by examining the wsp:AppliesTo value supplied to the IP and refusing to issue a token to

endpoints only using HTTP.

While encrypting the token is not possible for RPs without certificates, it is worth noting that

the token can still be signed by the Identity Provider. This means that even RPs without

certificates can determine whether the claims in the token are genuine, even though they

were sent in the clear.

10. Using WS-SecurityPolicy 1.2 and WS-Trust 1.3

Implementers should consider how to handle situations where mixed versions of WS-

SecurityPolicy and WS-Trust may occur. For example, even in the simple scenario of a

browser-based Relying Party requesting a managed card that was issued by an STS using

WS-Trust 1.3, the STS may receive secondary parameter values using the WS-Trust 1.2

namespace.

In the case where a RP/STS is involved, this may also occur. For instance, in the case

where a RP/STS uses WS-Trust 1.2 and an Identity Provider uses WS-Trust 1.3, the RST

that is received by the IP/STS will have the policy of the RP/STS in its

SecondaryParameters. But since these parameters are sent using WS-Trust 1.2, the

contents of the SecondaryParameters element will also use WS-Trust 1.2. The following

example illustrates this possibility:

<wst13:RequestSecurityToken Context="ProcessRequestSecurityToken">

 ...

 <wst13:KeyType>http://docs.oasis-open.org/ws-sx/ws-

trust/200512/SymmetricKey</wst13:KeyType>

Version 1.5 Page 75 of 83

 <wst13:SecondaryParameters>

 <wst12:KeyType

xmlns:wst12="http://schemas.xmlsoap.org/ws/2005/02/trust">http://schemas.xmls

oap.org/ws/2005/02/trust/SymmetricKey</wst12:KeyType>

 ...

 </wst13:SecondaryParameters>

</wst13:RequestSecurityToken>

11. References

[ISIP]

A. Nanda and M. Jones, “Identity Selector Interoperability Profile V1.5”, July 2008.

[ISIP V1.0]

A. Nanda, “Identity Selector Interoperability Profile V1.0”, April 2007.

[ISIP Web Guide]

M. Jones, “A Guide to Using the Identity Selector Interoperability Profile V1.5 within Web

Applications and Browsers”, July 2008.

[SOAP 1.2]

M. Gudgin, et al., “SOAP Version 1.2 Part 1: Messaging Framework”, June 2003.

[WS-Addressing]

M. Gudgin et al., “Web Services Addressing 1.0 – Core”, August 2005.

[Addressing-Ext]

J. Alexander et al., “Application Note: Web Services Addressing Endpoint References and

Identity”, July 2008.

[WS-MetadataExchange]

“Web Services Metadata Exchange (WS-MetadataExchange), Version 1.1” August 2006.

[WS-Security]

A. Natalin et al., “Web Services Security: SOAP Message Security 1.0”, May 2004.

[WS-Policy]

“Web Services Policy Framework (WS-Policy), Version 1.2”, March 2006.

[WS-SecurityPolicy 1.1]

“Web Services Security Policy Language (WS-SecurityPolicy), Version 1.1”, July 2005.

[WS-SecurityPolicy 1.2]

OASIS, “WS-SecurityPolicy 1.2”, July 2007.

[WS-Trust 1.2]

“Web Services Trust Language (WS-Trust)”, February 2005.

[WS-Trust 1.3]

OASIS, “WS-Trust 1.3”, March 2007.

[XMLDSIG]

Eastlake III, D., Reagle, J., and Solo, D., “XML-Signature Syntax and Processing”, March

2002.

[XMLENC]

Imamura, T., Dillaway, B., and Simon, E., “XML Encryption Syntax and Processing”,

August 2002.

[XML Schema, Part 1]

H. Thompson et al., “XML Schema Part 1: Structures”, May 2001.

http://www.microsoft.com/downloads/details.aspx?FamilyID=b94817fc-3991-4dd0-8e85-b73e626f6764&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=b94817fc-3991-4dd0-8e85-b73e626f6764&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=b94817fc-3991-4dd0-8e85-b73e626f6764&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=b94817fc-3991-4dd0-8e85-b73e626f6764&DisplayLang=en
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/2005/CR-ws-addr-core-20050817/
http://schemas.xmlsoap.org/ws/2006/02/addressingidentity
http://schemas.xmlsoap.org/ws/2006/02/addressingidentity
http://schemas.xmlsoap.org/ws/2006/02/addressingidentity
http://specs.xmlsoap.org/ws/2004/09/mex/WS-MetadataExchange.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://specs.xmlsoap.org/ws/2004/09/policy/ws-policy.pdf
http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.pdf
http://specs.xmlsoap.org/ws/2005/02/trust/WS-Trust.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://www.ietf.org/rfc/rfc3275.txt
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmlschema-1/

Version 1.5 Page 76 of 83

[XML Schema, Part 2]

P. Biron et al., “XML Schema Part 2: Datatypes”, May 2001.

http://www.w3.org/TR/xmlschema-2/

Version 1.5 Page 77 of 83

Appendix A – Glossary

Authentication

Authentication is the process of validating security credentials.

Claim

A Claim is a statement made about an entity such as a sender, a service, or other

resource (e.g., name, identifier, key, group, privilege, capability, etc.). It is sometimes

referred to as an assertion in the security literature.

Claims Authority

A Claims Authority is an entity that can authenticate principals and make specific claims

about them which other services may trust. For example, an authority may assert a

user‟s name, address and social security number as claims which another service may

trust and accept. A Claims Authority is typically a Security Token Service.

Confidentiality

Confidentiality is the process by which data is protected such that only authorized

actors or Security Token owners can view the data.

Digest

A digest is a cryptographic checksum of an octet stream.

Digital Identity

A Digital Identity is a set of claims made by one party about another party. Claims are

typically conveyed in Signed Security Tokens.

Identity Provider (IP)

An Identity Provider is a network entity providing the Digital Identity claims used by a

Relying Party.

Identity Selector

The Identity Selector is a software component available to the Service Requester

through which the user controls and dispatches her Digital Identities.

Information Card

An Information Card is a document containing metadata for obtaining Digital Identity

claims from Identity Providers. The Information Cards provide visual representations of

Digital Identities for the end user.

Information Card Model

The Information Card model refers to the use of Information Cards for obtaining Digital

Identity claims from Identity Providers and then conveying them to relying parties

under user control.

Integrity

Integrity is the process by which it is guaranteed that information is not modified in

transit.

Version 1.5 Page 78 of 83

IP/STS

The term IP/STS refers to the Security Token Service run by an Identity Provider to

issue tokens.

Principal

See Subject.

Proof-of-Possession

The proof-of-possession information is data that is used to demonstrate the sender‟s

knowledge of information that should only be known to the claiming sender of a

Security Token.

Relying Party (RP)

A Relying Party is a network entity providing the desired service, and relying upon

Digital Identity.

Security Binding

A set of properties that together provide enough information to secure a given message

exchange.

Security Token

A Security Token represents a collection of one or more claims.

Security Token Service

A Security Token Service (STS) is a Web service that issues Security Tokens – that is,

the service makes assertions – based on evidence that it trusts, to those services that

trust the service or to specific recipients.

Service Requester

A Service Requester is software acting on behalf of a party who wants to obtain a

service through a digital network.

Signature

A signature is a cryptographic binding of a proof-of-possession and a digest. This covers

both symmetric key-based and public key-based signatures.

Signed Security Token

A Signed Security Token is a Security Token that is cryptographically endorsed by a

specific authority (e.g., an X.509 certificate, a Kerberos ticket or a SAML assertion).

Subject

A Subject is any entity about which claims can be made by an Identity Provider. These

entities include users, services, computers and devices.

Version 1.5 Page 79 of 83

Appendix B – Self-Issued Tokens

Information Card Identity Selectors may include a simple Identity Provider called the “Self-

issued Identity Provider” (see Figure 1) which allows users to self-assert identity in the form

of self-issued tokens. These tokens may be acceptable, for example, when accessing a retail

bookseller Web service to set up an account. The retail service may allow the user to self-

assert her own name and address information.

This section describes how a Relying Party that accepts self-issued tokens can authenticate

and use them. Note that an Identity Provider can also be the Relying Party for self-issued

tokens if it accepts a self-issued token as the credential to authenticate a user. This is

described in more detail in Section 5.5.

Self-issued Token Characteristics

The characteristics of a self-issued token, including its format, the encryption structure, and

the supported claim types are defined in [ISIP].

Although a self-issued token is always encrypted to the Relying Party, following is an

example of a decrypted self-issued Security Token containing three claims (or attributes)

with an asymmetric proof key.

Example:

<Assertion xmlns="urn:oasis:names:tc:SAML:1.0:assertion"

 AssertionID="uuid:08301dba-d8d5-462f-85db-dec08c5e4e17"

 Issuer="http://schemas.xmlsoap.org/ws/2005/05/identity/issuer/self"

 IssueInstant="2004-10-06T16:44:20.00Z"

 MajorVersion="1" MinorVersion="1">

 <Conditions NotBefore="2004-10-06T16:44:20.00Z"

 NotOnOrAfter="2004-10-06T16:49:20.00Z">

 <AudienceRestrictionCondition>

 <Audience>http://www.relying-party.com</Audience>

 </AudienceRestrictionCondition>

 </Conditions>

 <AttributeStatement>

 <Subject>

 <SubjectConfirmation>

 <ConfirmationMethod>

 urn:oasis:names:tc:SAML:1.0:cm:holder-of-key

 </ConfirmationMethod>

 <ds:KeyInfo>

 <!-- The proof key goes here. The content of this element

 is either a symmetric key or a RSA public key depending

 on what is required by the Relying Party -->

 <!-- Proof key: an asymmetric RSA public key -->

 <KeyValue>

 <RSAKeyValue>

 <Modulus>...</Modulus>

 <Exponent>AQAB</Exponent>

 </RSAKeyValue>

 </KeyValue>

 </ds:KeyInfo>

 </SubjectConfirmation>

 </Subject>

 <Attribute AttributeName="privatepersonalidentifier"

 AttributeNamespace="http://.../ws/2005/05/identity/claims">

Version 1.5 Page 80 of 83

 <AttributeValue>q65Thp8EqU0S+A4Qu+==</AttributeValue>

 </Attribute>

 <Attribute AttributeName="givenname"

 AttributeNamespace="http://.../ws/2005/05/identity/claims">

 <AttributeValue>dasf</AttributeValue>

 </Attribute>

 <Attribute AttributeName="emailaddress"

 AttributeNamespace="http://.../ws/2005/05/identity/claims">

 <AttributeValue>dasf@mail.com</AttributeValue>

 </Attribute>

 </AttributeStatement>

 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

 <SignedInfo>

 <CanonicalizationMethod

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 <SignatureMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <Reference URI="uuid:08301dba-d8d5-462f-85db-dec08c5e4e17">

 <Transforms>

 <Transform

 Algorithm="http://.../2000/09/xmldsig#enveloped-signature"/>

 <Transform

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 </Transforms>

 <DigestMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <DigestValue>vpnIyEi4R/S4b+1vEH4gwQ9iHsY=</DigestValue>

 </Reference>

 </SignedInfo>

 <SignatureValue>...</SignatureValue>

 <KeyInfo>

 <!-- Token signing key: an asymmetric RSA public key -->

 <KeyValue>

 <RSAKeyValue>

 <Modulus>...</Modulus>

 <Exponent>AQAB</Exponent>

 </RSAKeyValue>

 </KeyValue>

 </KeyInfo>

 </Signature>

</Assertion>

Note the following in the self-issued token shown above:

 The issuer of the token, indicated by the value of the saml:Issuer attribute, is

specified as the URI http://schemas.xmlsoap.org/ws/2005/05/identity/issuer/self.

 The token is issued specifically for use at the Relying Party (i.e., target scope) by

using the saml:AudienceRestrictionCondition element.

 The subject confirmation key (or proof key) in the issued token is a RSA public key

within the saml:SubjectConfirmation element.

 The token signing key in the issued token is a RSA public key within the

ds:Signature element.

Version 1.5 Page 81 of 83

Accepting Self-issued Tokens

A Relying Party can accept self-issued tokens from users where it is convenient and

appropriate. As described earlier, an Identity Provider can also accept self-issued tokens as

authentication credential. When accepting and processing self-issued tokens, one should

adhere to the following guidelines.

 The token signing key (a RSA public key) in the self-issued token should be used as

the long-term trusted key associated with the user. This key is used to authenticate

the user whenever a self-issued token is presented. The proof key in the token may

change from one instance of a self-issued token to another from the same user (e.g.,

two tokens issued at different times).

 The signature of the self-issued token should always be verified.

 When accepting and verifying a self-issued token, ensure that the current time falls

within the token‟s validity interval; otherwise reject the token.

 If an audience restriction condition is included in the self-issued token specifying a

target scope, then ensure that the Relying Party is covered by that scope. Otherwise,

reject the token.

 If a subject confirmation key is specified in the self-issued token, it should be treated

as a short-term key to demonstrate proof-of-possession of the token. The Service

Requester must be required to provide some proof of its knowledge of the subject

confirmation key.

 If a long-term unique identifier for the user is needed (for example, to anchor profile

information for the user), then the “Private Personal Identifier” claim should be used

and specified as a required claim in the token policy (see description of that claim in

[ISIP]). This claim provides a privacy friendly identifier for the user that is the

Subject of the Security Token.

Version 1.5 Page 82 of 83

Appendix C – Windows CardSpace .NET Framework 3.5
Service Pack 1 Constraints

The Identity Selector Interoperability Profile V1.5 was used to implement the Windows

CardSpace software in Microsoft .NET Framework 3.5 Service Pack 1. This section

documents any additional constraints imposed by the Windows CardSpace .NET Framework

3.5 Service Pack 1 implementation or where it differs from the V1.5 profile. All references to

section numbers below are with respect to the [ISIP] profile document.

 In reference to Section 3.3, Relying Parties employing Relying Party STSs must have

a certificate. In particular, RP Web sites using only HTTP can not use RP/STSs.

 In reference to Section 3.4, Relying Parties must specify a least one required claim.

 In reference to Section 4, when retrieving the WSDL of an IP including its policy

Windows CardSpace has the additional restriction that “whitespace” characters are

not allowed between XML element tags, or between an element tag and the element

content (unless the whitespace is explicitly part of the element content) within the

SOAP body in the metadata response message.

 In reference to Section 4, when requesting Security Token from an IP Windows

CardSpace has the additional restriction that “whitespace” characters are not allowed

between XML element tags, or between an element tag and the element content

(unless the whitespace is explicitly part of the element content) within the SOAP

body in the token response message.

 In reference to Section 4.1.1, Windows CardSpace has the additional restriction for

an Information Card issued by an IP that “whitespace” characters are not allowed

between XML element tags, or between an element tag and the element content

(unless the whitespace is explicitly part of the element content) in the Information

Card XML document.

 In reference to Sections 4.1.1 and 7, while Windows CardSpace does ignore any

extensions it does not recognize it does not preserve those that it does not recognize

and emit them in the respective ic:InformationCard element of an

ic:RoamingStore when representing the card in the Information Cards Transfer

Format in Section 7.

 In reference to Section 4.1.1.2, when traversing the ordered list of endpoints, if the

policy is retrieved for a token service, but the token service is not available, no fail-

over occurs, at which point Windows CardSpace will show an error to the user.

 In reference to Section 4.1.1.2, Windows CardSpace will only store and use up to 20

endpoints for a card.

 In reference to Section 4.3.6, Windows CardSpace does not support displaying in its

user interface a Display Token that uses the alternative textual representation format

using the ic:DisplayTokenText element of a Display Token.

 In reference to Section 5.3, when an Information Card issued by an IP specifies a

X.509v3 certificate as the user credential, the URI accepted by Windows CardSpace

as the value of the ValueType attribute on the wsse:KeyIdentifier element differs

from the Identity Selector Interoperability Profile and is as follows:

http://docs.oasis-open.org/wss/2004/xx/oasis-2004xx-wss-soap-message-security-

1.1#ThumbprintSHA1

Version 1.5 Page 83 of 83

 In reference to Section 6, Windows CardSpace will only display SOAP fault messages

that are secured using the methods required by the binding in use, which typically

result in the message being signed and encrypted. Unsecured SOAP fault messages

will not be displayed.

 In reference to Section 7.1, Windows CardSpace does not preserve not-understood

elements permitted by the XML element extensibility points (indicated by the {any}

entries) in the Information Cards Transfer Format.

 In reference to Section 7.1, Windows CardSpace will create a random ic:HashSalt

value for an Information Card when that card is imported using the Information

Cards Transfer Format and the ic:HashSalt entry in the Transfer Format is empty or

missing.

