
Version 1.5 Page 1 of 60

Identity Selector Interoperability Profile V1.5

July 2008

Authors

Arun Nanda, Microsoft Corporation

Michael B. Jones, Microsoft Corporation

Copyright Notice

(c) 2006-2008 Microsoft Corporation. All rights reserved.

Abstract

This document is intended for developers and architects who wish to design identity

systems and applications that interoperate using the Identity Selector Interoperability

Profile V1.5.

An Identity Selector and the associated identity system components allow users to manage

their Digital Identities from different Identity Providers, and employ them in various

contexts to access online services.

http://www.microsoft.com/

Version 1.5 Page 2 of 60

Table of Contents

1. Introduction

2. Terminology and Notation

2.1. XML Namespaces

2.2. Notational Conventions

3. Relying Party Interactions

3.1. Expressing Token Requirements of Relying Party

3.1.1. Issuer of Tokens

3.1.2. Type of Proof Key in Issued Tokens

3.1.3. Claims in Issued Tokens

3.2. Expressing Privacy Policy of Relying Party

3.3. Employing Relying Party STSs

4. Identity Provider Interactions

4.1. Information Card

4.1.1. Information Card Format

4.1.1.1. Information Card Reference

4.1.1.2. Token Service Endpoints and Authentication Mechanisms

4.1.1.3. Token Types Offered

4.1.1.4. Claim Types Offered

4.1.1.5. Requiring Token Scope Information

4.1.1.6. Privacy Policy Location

4.1.1.7. Prohibiting Use at Relying Parties Not Identified by a Cryptographically
Protected Identity

4.1.1.8. Providing Custom Data to Display with the Card

4.1.2. Issuing Information Cards

4.2. Identity Provider Policy

4.2.1. Require Information Card Provisioning

4.2.2. Policy Metadata Location

4.3. Token Request and Response

4.3.1. Information Card Reference

4.3.2. Claims and Other Token Parameters

4.3.3. Token Scope

4.3.4. Client Pseudonym

4.3.4.1. PPID

4.3.5. Proof Key for Issued Token

4.3.5.1. Symmetric Proof Key

4.3.5.2. Asymmetric Proof Key

4.3.5.3. No Proof Key

4.3.6. Display Token

4.3.7. Token References

5. Authenticating to Identity Provider

5.1. Username and Password Credential

Version 1.5 Page 3 of 60

5.2. Kerberos v5 Credential

5.3. X.509v3 Certificate Credential

5.4. Self-issued Token Credential

6. Faults

6.1. Relying Party

6.2. Identity Provider

6.2.1. Identity Provider Custom Error Messages

7. Information Cards Transfer Format

7.1. Pre-Encryption Transfer Format

7.1.1. PIN Protected Card

7.1.2. Computing the ic:IssuerId

7.1.3. Computing the ic:IssuerName

7.1.4. Creating the ic:HashSalt

7.2. Post-Encryption Transfer Format

8. Simple Identity Provider Profile

8.1. Self-Issued Information Card

8.2. Self-Issued Token Characteristics

8.3. Self-Issued Token Encryption

8.4. Self-Issued Token Signing Key

8.4.1. Processing Rules

8.5. Claim Types

8.5.1. First Name

8.5.2. Last Name

8.5.3. Email Address

8.5.4. Street Address

8.5.5. Locality Name or City

8.5.6. State or Province

8.5.7. Postal Code

8.5.8. Country

8.5.9. Primary or Home Telephone Number

8.5.10. Secondary or Work Telephone Number

8.5.11. Mobile Telephone Number

8.5.12. Date of Birth

8.5.13. Gender

8.5.14. Private Personal Identifier

8.5.15. Web Page

8.6. The PPID Claim

8.6.1. Relying Party Identifier and Relying Party PPID Seed

8.6.2. PPID

8.6.3. Friendly Identifier

9. Relying Parties without Certificates

9.1. Relying Party Identifier and Relying Party PPID Seed

9.2. AppliesTo Information

Version 1.5 Page 4 of 60

9.3. Token Signing and Encryption

10. Using WS-SecurityPolicy 1.2 and WS-Trust 1.3

10.1. Overview of Differences

10.2. Identity Selector Differences

10.3. Security Token Service Differences

11. References

1. Introduction

The Identity Selector Interoperability Profile V1.5 prescribes a subset of the mechanisms

defined in [WS-Trust 1.2], [WS-Trust 1.3], [WS-SecurityPolicy 1.1], [WS-SecurityPolicy

1.2], and [WS-MetadataExchange] to facilitate the integration of Digital Identity into an

interoperable token issuance and consumption framework.

The term “Service Requester” means software acting on behalf of a party who wants to

obtain a service through a digital network.

The term “Relying Party” (RP) means a network entity providing the desired service, and

relying upon Digital Identity.

A “Digital Identity” is a set of claims made by one party about another party.

The term “Identity Provider” (IP) means a network entity providing the Digital Identity

claims used by a Relying Party.

The term “IP/STS” refers to the Security Token Service run by an Identity Provider to issue

tokens.

The term “Identity Selector” (IS) refers to a software component available to the Service

Requester through which the user controls and dispatches her Digital Identities.

The “Information Card Model” refers to the use of Information Cards containing metadata

for obtaining Digital Identity claims from Identity Providers and then conveying them to

relying parties under user control. The Information Cards provide visual representations of

Digital Identities for the end user.

This profile constrains the schema elements/extensions used by the Information Card

Model, and behaviors for conforming relying parties, Identity Providers and Identity

Selectors.

2. Terminology and Notation

2.1. XML Namespaces

The base XML namespace URI used by the definitions in this profile is as follows:

http://schemas.xmlsoap.org/ws/2005/05/identity

A copy of the XML Schema for this document can be found at:

http://schemas.xmlsoap.org/ws/2005/05/identity/identity.xsd

Table 1 lists the XML namespaces that are used in this document. The current SOAP 1.2

namespace URI is used to provide detailed examples, not to limit the applicability of the

mechanisms defined in this document to a single version of SOAP.

Table 1: Prefixes and XML namespaces used in this document

Version 1.5 Page 5 of 60

Prefix XML Namespace Specification(s)

S http://www.w3.org/2003/05/soap-envelope SOAP 1.2 [SOAP 1.2]

xs http://www.w3.org/2001/XMLSchema XML Schema [Part 1, 2]

ds http://www.w3.org/2000/09/xmldsig# XML Digital Signatures

ic http://schemas.xmlsoap.org/ws/2005/05/identity This document

ic07 http://schemas.xmlsoap.org/ws/2007/01/identity Namespace for

additional elements

also defined by this

document

saml urn:oasis:names:tc:SAML:1.0:assertion SAML 1.0

wsid http://schemas.xmlsoap.org/ws/2006/02/

addressingidentity

Identity Extension for

Web Services

Addressing

[Addressing-Ext]

wsx http://schemas.xmlsoap.org/ws/2004/09/mex WS-MetadataExchange

[WS-

MetadataExchange]

wsa http://www.w3.org/2005/08/addressing WS-Addressing [WS-

Addressing]

wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-

wss-wssecurity-utility-1.0.xsd

WS-SecurityUtility

wsse http http://docs.oasis-open.org/wss/2004/01/oasis-

200401-wss-wssecurity-secext-1.0.xsd

WS-Security Extensions

[WS-Security]

wst12 http://schemas.xmlsoap.org/ws/2005/02/trust WS-Trust 1.2 [WS-

Trust 1.2]

wst13 http://docs.oasis-open.org/ws-sx/ws-trust/200512 WS-Trust 1.3 [WS-

Trust 1.3]

wst May refer to either

http://schemas.xmlsoap.org/ws/2005/02/trust or

http://docs.oasis-open.org/ws-sx/ws-trust/200512 since

both may be used

WS-Trust

wsp http://schemas.xmlsoap.org/ws/2004/09/policy WS-Policy [WS-Policy]

sp11 http://schemas.xmlsoap.org/ws/2005/07/securitypolicy WS-SecurityPolicy 1.1

[WS-SecurityPolicy 1.1]

sp12 http://docs.oasis-open.org/ws-sx/ws-

securitypolicy/200702

WS-SecurityPolicy 1.2

[WS-SecurityPolicy 1.2]

http://www.w3.org/2003/05/soap-envelope
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/ws/2005/05/identity
http://schemas.xmlsoap.org/ws/2004/09/mex
http://www.w3.org/2005/08/addressing
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
http://schemas.xmlsoap.org/ws/2005/02/trust
http://docs.oasis-open.org/ws-sx/ws-trust/200512
http://schemas.xmlsoap.org/ws/2005/02/trust
http://docs.oasis-open.org/ws-sx/ws-trust/200512
http://schemas.xmlsoap.org/ws/2004/09/policy
http://schemas.xmlsoap.org/ws/2005/07/securitypolicy
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702

Version 1.5 Page 6 of 60

sp May refer to either

http://schemas.xmlsoap.org/ws/2005/07/securitypolicy

or http://docs.oasis-open.org/ws-sx/ws-

securitypolicy/200702 since both may be used

WS-SecurityPolicy

2.2. Notational Conventions

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,

“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be

interpreted as described in [RFC 2119].

This profile uses the following syntax to describe outlines for messages and XML fragments:

 The syntax appears as an XML instance, but values in italics indicate data types instead

of values.

 Characters are appended to elements and attributes to indicate cardinality:

 “?” (0 or 1)

 “*” (0 or more)

 “+” (1 or more)

 The character “|” is used to indicate a choice between alternatives.

 The characters “(” and “)” are used to indicate that contained items are to be treated as

a group with respect to cardinality or choice.

 The characters “[” and “]” are used to call out references and property names.

 An ellipsis (i.e. “...”) indicates a point of extensibility that allows other child or attribute

content. Additional children or attributes can be added at the indicated extension points.

An Identity Selector MAY ignore any extensions it does not recognize.

 XML namespace prefixes (see Table 1) are used to indicate the namespace of the

element being defined.

Normative text within this profile takes precedence over normative outlines, which in turn

take precedence over the XML Schema descriptions.

3. Relying Party Interactions

This section defines the constructs used by a Relying Party Web service for specifying and

conveying its Security Token requirements to the Service Requester.

3.1. Expressing Token Requirements of Relying Party

A Relying Party specifies its Security Token requirements as part of its Security Policy using

the primitives and assertions defined in WS-SecurityPolicy. The primary construct in the

Security Policy of the Relying Party used to specify its requirement for a Security Token

from an Identity Provider is the sp:IssuedToken policy assertion. The basic form of the

issued token policy assertion as defined in WS-SecurityPolicy is as follows.

<sp:IssuedToken sp:Usage="xs:anyURI" sp:IncludeToken="xs:anyURI" ...>

 <sp:Issuer>

 wsa:EndpointReference | xs:any

 </sp:Issuer>

 <sp:RequestSecurityTokenTemplate>

 ...

http://schemas.xmlsoap.org/ws/2005/07/securitypolicy
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702

Version 1.5 Page 7 of 60

 </sp:RequestSecurityTokenTemplate>

 <wsp:Policy>

 ...

 </wsp:Policy>

 ...

</sp:IssuedToken>

The attributes and elements listed in the schema fragment above are described in WS-

SecurityPolicy.

The ensuing subsections describe special parameters added by this profile as extensions to

the sp:IssuedToken policy assertion that convey additional instructions to the Identity

Selector available to the Service Requester.

3.1.1. Issuer of Tokens

The sp:IssuedToken/sp:Issuer element in an issued token policy specifies the issuer for

the required token. More specifically, it should contain the endpoint reference of an Identity

Provider STS that can issue the required token.

A Relying Party MUST specify the issuer for a required token in one of the following ways:

 Indicate a specific issuer by specifying the issuer‟s endpoint as the value of the

sp:Issuer/wsa:Address element.

 Indicate that the issuer is unspecified by omitting the sp:Issuer element, which

means that the Service Requester should determine the appropriate issuer for the

required token with help from the user if necessary.

When requiring a specific issuer, a Relying Party MAY specify that it will accept self-issued

Security Tokens by using the special URI below as the value of the wsa:Address element

within the endpoint reference for the issuer.

URI:

http://schemas.xmlsoap.org/ws/2005/05/identity/issuer/self

Following is an example of using this URI within an issued token policy.

Example:

<sp:IssuedToken ...>

 <sp:Issuer>

 <wsa:Address>

 http://schemas.xmlsoap.org/ws/2005/05/identity/issuer/self

 </wsa:Address>

 </sp:Issuer>

 ...

</sp:IssuedToken>

A Relying Party MAY specify the value of the sp:Issuer/wsa:Address element in policy as a

“logical name” of the token issuer instead of an actual network address where the token is

issued. An Identity Selector SHOULD resolve the logical name to an appropriate endpoint for

the token issuer by matching the issuer name in Information Cards available to it.

If a Relying Party specifies the token issuer as a network endpoint in policy, then it MUST

also specify the location of issuer metadata from where the issuer‟s policy metadata can be

obtained. This is done using the mechanism defined in [WS-Addressing] for embedding

metadata within an endpoint reference. The following example shows a token policy where

the issuer endpoint and its corresponding metadata location are specified.

Example:

Version 1.5 Page 8 of 60

<sp:IssuedToken ...>

 <sp:Issuer>

 <wsa:Address>http://contoso.com/sts</wsa:Address>

 <wsa:Metadata>

 <wsx:Metadata>

 <wsx:MetadataSection

 Dialect="http://schemas.xmlsoap.org/ws/2004/09/mex">

 <wsx:MetadataReference>

 <wsa:Address>https://contoso.com/sts/mex</wsa:Address>

 </wsx:MetadataReference>

 </wsx:MetadataSection>

 </wsx:Metadata>

 </wsa:Metadata>

 </sp:Issuer>

 ...

</sp:IssuedToken>

3.1.2. Type of Proof Key in Issued Tokens

An Identity Selector SHOULD request an asymmetric key token from the Identity Provider to

maximize user privacy and security if no explicit key type is specified by the Relying Party.

A Relying Party MAY explicitly request the use of an asymmetric or symmetric key in the

required token by using the wst:KeyType element within its issued token policy assertion.

The key type URIs are defined in [WS-Trust]. The following example illustrates the use of

this element in the Relying Party‟s Security Policy to request a symmetric key in the issued

token.

Example:

<sp:IssuedToken>

 <sp:RequestSecurityTokenTemplate>

 <wst:KeyType>

 http://schemas.xmlsoap.org/ws/2005/02/trust/SymmetricKey

 </wst:KeyType>

 </sp:RequestSecurityTokenTemplate>

</sp:IssuedToken>

3.1.3. Claims in Issued Tokens

The claims requirement of a Relying Party can be expressed in its token policy by using the

optional wst:Claims parameter defined in [WS-Trust 1.2] and [WS-Trust 1.3]. However,

the wst:Claims parameter has an open content model. This profile defines the

ic:ClaimType element for use as a child of the wst:Claims element. A Relying Party MAY

use this element to specify an individual claim type required. Further, each required claim

MAY be specified as being mandatory or optional. Multiple ic:ClaimType elements can be

included to specify multiple claim types required.

The outline for the ic:ClaimType element is as follows:

Syntax:

<ic:ClaimType Uri="xs:anyURI" Optional="xs:boolean"? /> *

The following describes the attributes and elements listed in the schema outlined above:

/ic:ClaimType

Indicates the required claim type.

Version 1.5 Page 9 of 60

/ic:ClaimType/@Uri

The unique identifier of the required claim type.

/ic:ClaimType/@Optional

Indicates if the claim can be absent in the Security Token. By default, any required claim

type is a mandatory claim and must be present in the issued Security Token.

Two <ic:ClaimType> elements refer to the same claim type if and only if the values of their

XML attribute named Uri are equal in a case-sensitive string comparison.

When the ic:ClaimType element is used within the wst:Claims parameter in a token policy

to specify claims requirement, the wst:Dialect attribute on the wst:Claims element MUST

be qualified with the URI value below.

Dialect URI:

http://schemas.xmlsoap.org/ws/2005/05/identity

The above dialect URI value indicates that the specified claim elements are to be processed

according to this profile.

Following is an example of using this assertion within an issued token policy to require two

claim types where one claim type is optional.

Example:

<sp:IssuedToken ...>

 ...

 <sp:RequestSecurityTokenTemplate>

 ...

 <wst:Claims

 Dialect="http://schemas.xmlsoap.org/ws/2005/05/identity">

 <ic:ClaimType

 Uri="http://.../ws/2005/05/identity/claims/givenname"/>

 <ic:ClaimType

 Uri="http://.../ws/2005/05/identity/claims/surname"

 Optional="true" />

 </wst:Claims>

 </sp:RequestSecurityTokenTemplate>

 ...

</sp:IssuedToken>

This profile also defines a standard set of claim types for common personal information

about users that MAY be requested by Relying Party Web services in Security Tokens and

supported by any Identity Provider. These standard claim types are defined in Section 8.4.

3.2. Expressing Privacy Policy of Relying Party

A Relying Party Web service SHOULD publish its “Privacy Policy”. Users may decide to

release tokens and interact further with that service based on its Privacy Policy. No

assumptions are made regarding the format and content of the Privacy Policy and an

Identity Selector is not required to parse, interpret or act on the Privacy Policy

programmatically.

To express the location of its privacy statement, a Web service MUST use the optional policy

assertion ic:PrivacyNotice defined below:

Syntax:

<ic:PrivacyNotice Version="xs:unsignedInt"?> xs:anyURI </ic:PrivacyNotice>

The following describes the attributes and elements listed in the schema outlined above:

Version 1.5 Page 10 of 60

/ic:PrivacyNotice

This element is used to express the location of the privacy statement of a Web service.

/ic:PrivacyNotice/@Version

This optional attribute provides a version number for the privacy statement allowing

changes in its content to be reflected as a change in the version number. If present, it

MUST have a minimum value of 1.

Following is an example of using this policy element to express the location of the privacy

statement of a Web service.

Example:

<wsp:Policy>

 ...

<ic:PrivacyNotice Version="1">

 http://www.contoso.com/privacy

</ic:PrivacyNotice>

 ...

</wsp:Policy>

An Identity Selector MUST be able to accept a privacy statement location specified as an

URL using the [HTTP] scheme (as illustrated above) or the [HTTPS] scheme.

Because the Privacy Policy assertion points to a “privacy statement” that applies to a service

endpoint, the assertion MUST apply to [Endpoint Policy Subject]. In other words, a policy

expression containing the Privacy Policy assertion MUST be attached to a wsdl:binding in

the metadata for the service.

Further, when an Identity Selector can only render the privacy statement document in a

limited number of document formats (media types), it MAY use the HTTP request-header

field “Accept” in its HTTP GET request to specify the media-types it can accept. For example,

the following request-header specifies that the client will accept the Privacy Policy only as a

plain text or a HTML document.

Accept: text/plain, text/html

Similarly, if an Identity Selector wants to obtain the privacy statement in a specific

language, it MAY use the HTTP request-header field “Accept-Language” in its HTTP GET

request to specify the languages it is willing to accept. For example, the following request-

header specifies that the client will accept the Privacy Policy only in Danish.

Accept-Language: da

A Web service, however, is not required to be able to fulfill the document format and

language requests of an Identity Selector. It may publish its privacy statement in a fixed set

of document formats and languages.

3.3. Employing Relying Party STSs

The Security Policy of a Relying Party MAY require that an issued token be obtained from a

Relying Party STS. This can create a chain of STSs. The Identity Selector MUST follow the

RP/STS chain, contacting each referenced STS, resolving its Policy statements and

continuing to the STS it refers to.

When following a chain of STSs, when an STS with an

ic:RequireFederatedIdentityProvisioning declaration is encountered as per Section

4.2.1, this informs the Identity Selector that the STS is an IP/STS, rather than a member of

the RP/STS chain. Furthermore, if an RP or RP/STS provides an incomplete Security Policy,

such as no issuer or no required claims, the Identity Selector MUST be invoked so a card

Version 1.5 Page 11 of 60

and requested claims can be selected by the user, enabling a Request for Security Token

(RST) to be constructed and sent to the selected IP/STS.

The RP/STS‟s Policy is used for card matching. If the RP/STS requests a PPID, the RP/STS‟s

certificate is used for calculating the PPID – not the certificate of the Relying Party. This

enables a single RP/STS to service multiple Relying Parties while always receiving the same

PPID for a given user from the Identity Selector.

Identity Selectors MUST enable users to make Relying Party trust decisions based on the

identity of the Relying Party, possibly including displaying attributes from its certificate. By

trusting the RP, the user is implicitly trusting the chain of RP/STSs that the RP employs.

Each RP/STS endpoint MUST provide a certificate. This certificate MAY be communicated

either via Transport (such as HTTPS) or Message (such as WS-Security) Security. If

Message Security is employed, transports not providing security (such as HTTP) may be

used.

4. Identity Provider Interactions

This section defines the constructs used by an Identity Selector for interacting with an

Identity Provider to obtain Information Cards, and to request and obtain Security Tokens.

4.1. Information Card

An Information Card represents a Digital Identity of a Subject that can be issued by an

Identity Provider. It is an artifact containing metadata that represents the token issuance

relationship between an Identity Provider and a Subject, and provides a visual

representation of the Digital Identity. Multiple Digital Identities for a Subject from the same

Identity Provider are represented by different Information Cards. Subjects may obtain an

Information Card from an Identity Provider, and may have a collection of Information Cards

from various Identity Providers.

4.1.1. Information Card Format

An Information Card is represented as a signed XML document that is issued by an Identity

Provider. The XML schema for an Information Card is defined below:

Syntax:

<ic:InformationCard xml:lang="xs:language" ...>

 <ic:InformationCardReference> ... </ic:InformationCardReference>

 <ic:CardName> xs:string </ic:CardName> ?

 <ic:CardImage MimeType="xs:string"> xs:base64Binary </ic:CardImage> ?

 <ic:Issuer> xs:anyURI </ic:Issuer>

 <ic:TimeIssued> xs:dateTime </ic:TimeIssued>

 <ic:TimeExpires> xs:dateTime </ic:TimeExpires> ?

 <ic:TokenServiceList> ... </ic:TokenServiceList>

 <ic:SupportedTokenTypeList> ... </ic:SupportedTokenTypeList>

 <ic:SupportedClaimTypeList> ... </ic:SupportedClaimTypeList>

 <ic:RequireAppliesTo ...> ... </ic:RequireAppliesTo> ?

 <ic:PrivacyNotice ...> ... </ic:PrivacyNotice> ?

 <ic07:RequireStrongRecipientIdentity /> ?

 <ic07:IssuerInformation> ... </ic07:IssuerInformation> *

 ...

</ic:InformationCard>

The following describes the attributes and elements listed in the schema outlined above:

Version 1.5 Page 12 of 60

/ic:InformationCard

An Information Card issued by an Identity Provider.

/ic:InformationCard/@xml:lang

A required language identifier, using the language codes specified in [RFC 3066], in

which the content of localizable elements have been localized.

/ic:InformationCard/ic:InformationCardReference

This required element provides a specific reference for the Information Card by which it

can be uniquely identified within the scope of an issuer. This reference MUST be included

by an Identity Selector in all token requests sent to the Identity Provider based on that

Information Card. The detailed schema of this element is defined in Section 4.1.1.1.

/ic:InformationCard/ic:CardName

This optional element provides a friendly textual name for the issued Information Card.

The content of this element MAY be localized in a specific language.

/ic:InformationCard/ic:CardImage

This optional element contains a base64 encoded inline image that provides a graphical

image for the issued Information Card. It SHOULD contain an image within the size

range of 60 pixels wide by 45 pixels high and 200 pixels wide by 150 pixels high.

/ic:InformationCard/ic:CardImage/@MimeType

This required attribute provides a MIME type specifying the format of the included card

image. This profile supports multiple image formats (e.g., JPEG, GIF) as enumerated in

the schema for this profile.

/ic:InformationCard/ic:Issuer

This required element provides a logical name for the issuer of the Information Card. If a

Relying Party specifies a token issuer by its logical name, then the content of this

element MUST be used to match the required token issuer with an Information Card.

/ic:InformationCard/ic:TimeIssued

This required element provides the date and time when the Information Card was

issued.

/ic:InformationCard/ic:TimeExpires

This optional element provides the date and time after which the Information Card

SHOULD be treated as expired and invalid.

/ic:InformationCard/ic:TokenServiceList

This required element provides an ordered list of Security Token Service (IP/STS)

endpoints, and corresponding credential descriptors (implying the required

authentication mechanisms), where tokens can be requested. Each service endpoint

MUST be tried in order by the Service Requester when requesting tokens.

/ic:InformationCard/ic:SupportedTokenTypeList

This required element contains the list of token types that are offered by the Identity

Provider.

/ic:InformationCard/ic:SupportedClaimTypeList

This required element contains the list of claim types that are offered by the Identity

Provider.

/ic:InformationCard/ic:RequireAppliesTo

This optional element indicates that token requests MUST include information identifying

the Relying Party where the issued token will be used. The Relying Party information

MUST be included as the content of a wsp:AppliesTo element in the token request.

Version 1.5 Page 13 of 60

/ic:InformationCard/ic:PrivacyNotice

This optional element provides the location of the privacy statement of the Identity

Provider.

/ic:InformationCard/ic07:RequireStrongRecipientIdentity

This optional element informs the Identity Selector that it MUST only allow the card to

be used at a Relying Party that presents a cryptographically protected identity, for

example, an X.509v3 certificate.

/ic:InformationCard/ic07:IssuerInformation

This optional element provides information from the card issuer about the card that can

be displayed by the Identity Selector user interface.

.../ic:InformationCard/@{any}

This is an extensibility point to allow additional attributes to be specified. While an

Identity Selector MAY ignore any extensions it does not recognize it SHOULD preserve

those that it does not recognize and emit them in the respective ic:InformationCard

element of an ic:RoamingStore when representing the card in the Information Cards

Transfer Format in Section 7.1.

.../ic:InformationCard/{any}

This is an extensibility point to allow additional metadata elements to be specified.

While an Identity Selector MAY ignore any extensions it does not recognize it SHOULD

preserve those that it does not recognize and emit them in the respective

ic:InformationCard element of an ic:RoamingStore when representing the card in the

Information Cards Transfer Format in Section 7.1.

4.1.1.1. Information Card Reference

Every Information Card issued by an Identity Provider MUST have a unique reference by

which it can be identified within the scope of the Identity Provider. This reference is included

in all token requests sent to the Identity Provider based on that Information Card.

The card reference MUST be expressed using the following schema element within an

Information Card.

Syntax:

<ic:InformationCardReference>

 <ic:CardId> xs:anyURI </ic:CardId>

 <ic:CardVersion> xs:unsignedInt </ic:CardVersion>

</ic:InformationCardReference>

The following describes the attributes and elements listed in the schema outlined above:

.../ic:InformationCardReference

A specific reference for an Information Card.

.../ic:InformationCardReference/ic:CardId

This required element provides a unique identifier in the form of a URI for the specific

Information Card. The identifier provider must be able to identify the specific

Information Card based on this identifier.

.../ic:InformationCardReference/ic:CardVersion

This required element provides a versioning epoch for the Information Card issuance

infrastructure used by the Identity Provider. The minimum value for this field MUST be

1. Note that it is possible to include version information in CardId as it is a URI, and can

have hierarchical content. However, it is specified as a separate value to allow the

Identity Provider to change its issuance infrastructure, and thus its versioning epoch,

Version 1.5 Page 14 of 60

independently without changing the CardId of all issued Information Cards. For example,

when an Identity Provider makes a change to the supported claim types or any other

policy pertaining to the issued cards, the version number allows the Identity Provider to

determine if the Information Card needs to be refreshed. The version number is

assumed to be monotonically increasing. If two Information Cards have the same CardId

value but different CardVersion values, then the one with a higher numerical

CardVersion value should be treated as being more up-to-date.

4.1.1.2. Token Service Endpoints and Authentication Mechanisms

Every Information Card issued by an Identity Provider MUST include an ordered list of

IP/STS endpoints, and the corresponding credential type to be used, for requesting tokens.

The list MUST be in a decreasing order of preference. Identity Selectors SHOULD attempt to

use the endpoints in the order listed, using the first endpoint in the list for which the

metadata is retrievable and the endpoint is reachable. For each endpoint, the required

credential type implicitly determines the authentication mechanism to be used. Each

credential descriptor is personalized for the user to allow an Identity Selector to

automatically locate the credential once the user has selected an Information Card.

Further, each IP/STS endpoint reference in the Information Card MUST include the Security

Policy metadata for that endpoint. The policy metadata MAY be specified as a metadata

location within the IP/STS endpoint reference. If a metadata location URL is specified, it

MUST use the [HTTPS] transport. An Identity Selector MAY retrieve the Security Policy it will

use to communicate with the IP/STS from that metadata location using the mechanism

specified in [WS-MetadataExchange].

The ordered list of token service endpoints MUST be expressed using the following schema

element within an Information Card.

Syntax:

<ic:TokenServiceList>

 (<ic:TokenService>

 <wsa:EndpointReference> ... </wsa:EndpointReference>

 <ic:UserCredential>

 <ic:DisplayCredentialHint> xs:string </ic:DisplayCredentialHint> ?

 (

 <ic:UsernamePasswordCredential>...</ic:UsernamePasswordCredential> |

 <ic:KerberosV5Credential>...</ic:KerberosV5Credential> |

 <ic:X509V3Credential>...</ic:X509V3Credential> |

 <ic:SelfIssuedCredential>...</ic:SelfIssuedCredential> | ...

)

 </ic:UserCredential>

 </ic:TokenService>) +

</ic:TokenServiceList>

The following describes the attributes and elements listed in the schema outlined above:

.../ic:TokenServiceList

This required element provides an ordered list of Security Token Service endpoints (in

decreasing order of preference), and the corresponding credential types, for requesting

tokens. Each service endpoint MUST be tried in order by a Service Requester.

.../ic:TokenServiceList/ic:TokenService

This required element describes a single token issuing endpoint.

.../ic:TokenServiceList/ic:TokenService/wsa:EndpointReference

This required element provides the endpoint reference for a single token issuing

endpoint. For the Self-issued Identity Provider, the special address value defined in

Version 1.5 Page 15 of 60

Section 3.1.1 MAY be used. The wsid:Identity extension element [Addressing-Ext] for

endpoint references MAY be used to include the protection token for this endpoint to

secure communications with it.

.../ic:TokenServiceList/ic:TokenService/ic:UserCredential

This required element indicates the credential type to use to authenticate to the token

issuing endpoint.

.../ic:TokenServiceList/ic:TokenService/ic:UserCredential/ic:DisplayCredentialHint

This optional element provides a hint (string) to be displayed to the user to prompt for

the correct credential (e.g. a hint to insert the right smart card). The content of this

element MAY be localized in a specific language.

.../ic:TokenServiceList/ic:TokenService/ic:UserCredential/<credential descriptor>

This required element provides an unambiguous descriptor for the credential to use for

authenticating to the token issuing endpoint. The schema to describe the credential is

specific to each credential type. This profile defines the schema elements
ic:UsernamePasswordCredential, ic:KerberosV5Credential, ic:X509V3Credential

or ic:SelfIssuedCredential later in Section 5 corresponding to username/password,

Kerberos v5, X.509v3 certificate and self-issued token based credential types. Other

credential types MAY be introduced via the extensibility point defined in the schema

within this element.

The following example illustrates an Identity Provider with two endpoints for its IP/STS, one

requiring Kerberos (higher priority) and the other requiring username/password (lower

priority) as its authentication mechanism. Further, each endpoint also includes its policy

metadata location as a URL using the [HTTPS] scheme.

Example:

<ic:TokenServiceList>

 <ic:TokenService>

 <wsa:EndpointReference>

 <wsa:Address>http://contoso.com/sts/kerb</wsa:Address>

 <wsid:Identity>

 <wsid:Spn>host/corp-sts.contoso.com</wsid:Spn>

 </wsid:Identity>

 <wsa:Metadata>

 <wsx:Metadata>

 <wsx:MetadataSection

 Dialect="http://schemas.xmlsoap.org/ws/2004/09/mex">

 <wsx:MetadataReference>

 <wsa:Address>https://contoso.com/sts/kerb/mex</wsa:Address>

 </wsx:MetadataReference>

 </wsx:MetadataSection>

 </wsx:Metadata>

 </wsa:Metadata>

 </wsa:EndpointReference>

 <ic:UserCredential>

 <ic:KerberosV5Credential />

 </ic:UserCredential>

 </ic:TokenService>

 <ic:TokenService>

 <wsa:EndpointReference>

 <wsa:Address>http://contoso.com/sts/pwd</wsa:Address>

 <wsa:Metadata>

 <wsx:Metadata>

 <wsx:MetadataSection

Version 1.5 Page 16 of 60

 Dialect="http://schemas.xmlsoap.org/ws/2004/09/mex">

 <wsx:MetadataReference>

 <wsa:Address>https://contoso.com/sts/pwd/mex</wsa:Address>

 </wsx:MetadataReference>

 </wsx:MetadataSection>

 </wsx:Metadata>

 </wsa:Metadata>

 </wsa:EndpointReference>

 <ic:UserCredential>

 <ic:UsernamePasswordCredential>

 <ic:Username>Zoe</ic:Username>

 </ic:UsernamePasswordCredential>

 </ic:UserCredential>

 </ic:TokenService>

</ic:TokenServiceList>

4.1.1.3. Token Types Offered

Every Information Card issued by an Identity Provider SHOULD include an unordered list of

token types that can be issued by the Identity Provider. The set of token types offered by

the Identity Provider MUST be expressed using the following schema element within an

Information Card.

Syntax:

<ic:SupportedTokenTypeList>

 <wst:TokenType> xs:anyURI </wst:TokenType> +

</ic:SupportedTokenTypeList>

The following describes the attributes and elements listed in the schema outlined above:

.../ic:SupportedTokenTypeList

This required element contains the set of token types offered by the Identity Provider.

.../ic:SupportedTokenTypeList/wst:TokenType

This required element indicates an individual token type that is offered.

The following example illustrates an Identity Provider that offers both SAML 1.1 and SAML

2.0 tokens.

Example:

<ic:SupportedTokenTypeList>

 <wst:TokenType>urn:oasis:names:tc:SAML:1.0:assertion</wst:TokenType>

 <wst:TokenType>urn:oasis:names:tc:SAML:2.0:assertion</wst:TokenType>

</ic:SupportedTokenTypeList>

4.1.1.4. Claim Types Offered

Every Information Card issued by an Identity Provider SHOULD include an unordered list of

claim types that can be issued by the Identity Provider. The set of claim types offered by

the Identity Provider MUST be expressed using the following schema element within an

Information Card.

Syntax:

<ic:SupportedClaimTypeList>

 (<ic:SupportedClaimType Uri="xs:anyURI">

 <ic:DisplayTag> xs:string </ic:DisplayTag> ?

 <ic:Description> xs:string </ic:Description> ?

 </ic:SupportedClaimType>) +

</ic:SupportedClaimTypeList>

Version 1.5 Page 17 of 60

The following describes the attributes and elements listed in the schema outlined above:

.../ic:SupportedClaimTypeList

This required element contains the set of claim types offered by the Identity Provider.

.../ic:SupportedClaimTypeList/ic:SupportedClaimType

This required element indicates an individual claim type that is offered.

.../ic:SupportedClaimTypeList/ic:SupportedClaimType/@Uri

This required attribute provides the unique identifier (URI) of this individual claim type

offered.

.../ic:SupportedClaimTypeList/ic:SupportedClaimType/ic:DisplayTag

This optional element provides a friendly name for this individual. The content of this

element MAY be localized in a specific language.

.../ic:SupportedClaimTypeList/ic:SupportedClaimType/ic:Description

This optional element provides a description of the semantics for this individual claim

type. The content of this element MAY be localized in a specific language.

The following example illustrates an Identity Provider that offers two claim types.

Example:

<ic:SupportedClaimTypeList>

 <ic:SupportedClaimType Uri=".../ws/2005/05/identity/claims/givenname">

 <ic:DisplayTag>Given Name</DisplayTag>

 </ic:SupportedClaimType>

 <ic:SupportedClaimType Uri=".../ws/2005/05/identity/claims/surname">

 <ic:DisplayTag>Last Name</DisplayTag>

 </ic:SupportedClaimType>

</ic:SupportedClaimTypeList>

4.1.1.5. Requiring Token Scope Information

An Identity Selector, by default, SHOULD NOT convey information about the Relying Party

where an issued token will be used (i.e., target scope) when requesting Security Tokens.

This helps safeguard user privacy. However, an Identity Provider MAY override that

behavior.

Every Information Card issued by an Identity Provider MAY include a requirement that token

requests must include token scope information identifying the Relying Party where the token

will be used. The requirement to submit token scope information MUST be expressed using

the following schema element within an Information Card.

Syntax:

<ic:RequireAppliesTo Optional="xs:boolean" /> ?

The following describes the attributes and elements listed in the schema outlined above:

.../ic:RequireAppliesTo

This optional element indicates a requirement for a token requester to submit token

scope information in the request. Absence of this element in an Information Card means

that the token requester MUST NOT submit any token scope information.

.../ic:RequireAppliesTo/@Optional

This optional attribute indicates whether the token scope information is mandatory or is

optionally accepted by the Identity Provider. An attribute value of “true” indicates that

the token scope information is not mandatory, but will be accepted by the Identity

Provider if submitted. An attribute value of “false” (default) indicates that the token

scope information is mandatory.

Version 1.5 Page 18 of 60

The following example illustrates the use of this element.

Example:

<ic:RequireAppliesTo Optional="true" />

If token scope information is required by an Identity Provider, an Identity Selector MUST

include the Relying Party identity as the content of the wsp:AppliesTo element in the token

request. The actual behavior of an Identity Selector vis-à-vis the possible requirements that

can be expressed by the above element is specified in Section 4.3.3.

4.1.1.6. Privacy Policy Location

Every Information Card issued by an Identity Provider SHOULD include a pointer to the

privacy statement of the Identity Provider. The location of the privacy statement MUST be

expressed using the following schema element within an Information Card.

Syntax:

<ic:PrivacyNotice Version="xs:unsignedInt" /> ?

The following describes the attributes and elements listed in the schema outlined above:

.../ic:PrivacyNotice

This optional element provides the location of the privacy statement of the Identity

Provider.

.../ic:PrivacyNotice/@Version

This optional attribute indicates a version number that tracks changes in the content of

the privacy statement. This field MUST have a minimum value of 1 when present.

The following example illustrates the use of this element.

Example:

<ic:PrivacyNotice Version="1">

http://www.contoso.com/privacynotice

</ic:PrivacyNotice>

An Identity Selector MUST be able to accept a privacy statement location specified as an

URL using the [HTTP] scheme (as illustrated above) or the [HTTPS] scheme.

4.1.1.7. Prohibiting Use at Relying Parties Not Identified by a Cryptographically

Protected Identity

Information Cards issuers MAY specify that a card MUST NOT be used at Relying Parties that

do not present a cryptographically protected identity, such as an X.509v3 Certificate. This

would typically be done when the issuer determines that the use of HTTP without Message

Security would not provide a sufficiently secure environment for the use of the card.

Syntax:

<ic07:RequireStrongRecipientIdentity /> ?

.../ic07:RequireStrongRecipientIdentity

This optional element informs the Identity Selector that it MUST only allow the card to

be used at a Relying Party that presents a cryptographically protected identity, such as

an X.509v3 certificate.

4.1.1.8. Providing Custom Data to Display with the Card

Card issuers MAY supply a set of information about the card that MAY be displayed by the

Identity Selector user interface.

Syntax:

Version 1.5 Page 19 of 60

<ic07:IssuerInformation>

 <IssuerInformationEntry>

 <EntryName> xs:string </EntryName>

 <EntryValue> xs:string </EntryValue>

 </IssuerInformationEntry> +

</ic07:IssuerInformation>

The following describes the attributes and elements listed in the schema outlined above:

.../ic07:IssuerInformation

This optional element provides a set of information from the card issuer about the card

that can be displayed by the Identity Selector user interface.

.../ic07:IssuerInformation/IssuerInformationEntry

This element provides one item of information about the card.

.../ic07:IssuerInformation/IssuerInformationEntry/EntryName

This element provides the name of one item of information about the card.

.../ic07:IssuerInformation/IssuerInformationEntry/EntryValue

This element provides the value of one item of information about the card.

The following example illustrates the use of this feature.

Example:

<ic07:IssuerInformation>

 <IssuerInformationEntry>

 <EntryName>Customer Service</EntryName>

 <EntryValue>+1-800-CONTOSO</EntryValue>

 </IssuerInformationEntry>

 <IssuerInformationEntry>

 <EntryName>E-mail Contact</EntryName>

 <EntryValue>cardhelp@contoso.com</EntryValue>

 </IssuerInformationEntry>

</ic07:IssuerInformation>

4.1.2. Issuing Information Cards

An Identity Provider can issue Information Cards to its users using any out-of-band

mechanism that is mutually suitable.

In order to provide the assurance that an Information Card is indeed issued by the Identity

Provider expected by the user, the Information Card MUST be carried inside a digitally

signed envelope that is signed by the Identity Provider. For this, the “enveloping signature”

construct (see [XMLDSIG]) MUST be used where the Information Card is included in the

ds:Object element. The signature on the digitally signed envelope provides data origin

authentication assuring the user that it came from the right Identity Provider.

The specific profile of XML digital signatures [XMLDSIG] that MUST be used to sign the

envelope carrying the Information Card is as follows:

 Use enveloping signature format when signing the Information Card XML document.

 Use a single ds:Object element within the signature to hold the

ic:InformationCard element that represents the issued Information Card. The

ds:Object/@Id attribute provides a convenient way for referencing the Information

Card from the ds:SignedInfo/ds:Reference element within the signature.

 Use RSA signing and verification with the algorithm identifier given by the URI

http://www.w3.org/2000/09/xmldsig#rsa-sha1.

Version 1.5 Page 20 of 60

 Use exclusive canonicalization with the algorithm identifier given by the URI

http://www.w3.org/2001/10/xml-exc-c14n#.

 Use SHA1 digest method for the data elements being signed with the algorithm

identifier http://www.w3.org/2000/09/xmldsig#sha1.

 There MUST NOT be any other transforms used in the enveloping signature for the

Information Card other than the ones listed above.

 The ds:KeyInfo element MUST be present in the signature carrying the signing key

information in the form of an X.509 v3 certificate or a X.509 v3 certificate chain

specified as one or more ds:X509Certificate elements within a ds:X509Data

element.

The following example shows an enveloping signature carrying an Information Card that is

signed by the Identity Provider using the format outlined above. Note that whitespace

(newline and space character) is included in the example only to improve readability; they

may not be present in an actual implementation.

Example:

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

 <SignedInfo>

 <CanonicalizationMethod

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

 <SignatureMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

 <Reference URI="#_Object_InformationCard">

 <Transforms>

 <Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

 </Transforms>

 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

 <DigestValue> ... </DigestValue>

 </Reference>

 </SignedInfo>

 <SignatureValue> ... </SignatureValue>

 <KeyInfo>

 <X509Data>

 <X509Certificate> ... </X509Certificate>

 </X509Data>

 </KeyInfo>

 <Object Id="_Object_InformationCard">

 <ic:InformationCard

 xmlns:ic="http://schemas.xmlsoap.org/ws/2005/05/identity"

 xml:lang="en-us">

 [Information Card content]

 </ic:InformationCard>

 </Object>

</Signature>

An Identity Selector MUST verify the enveloping signature. The ic:InformationCard

element can then be extracted and stored in the Information Card collection.

4.2. Identity Provider Policy

This section specifies additional policy elements and requirements introduced by this profile

for an IP/STS policy metadata.

Version 1.5 Page 21 of 60

4.2.1. Require Information Card Provisioning

In the Information Card Model, an Identity Provider requires provisioning in the form of an

Information Card issued by it which represents the provisioned identity of the user. In order

to enable an Identity Selector to learn that such pre-provisioning is necessary before token

requests can be made, the Identity Provider MUST provide an indication in its policy.

An Identity Provider issuing Information Cards MUST specify this provisioning requirement

in its policy using the following schema element.

Syntax:

<ic:RequireFederatedIdentityProvisioning />

The following describes the attributes and elements listed in the schema outlined above:

.../ic:RequireFederatedIdentityProvisioning

This element indicates a requirement that one or more Information Cards, representing

identities that can be federated, must be pre-provisioned before token requests can be

made to the Identity Provider.

The following example illustrates the use of this policy element.

Example:

<wsp:Policy>

 ...

<ic:RequireFederatedIdentityProvisioning />

<sp:SymmetricBinding>

 ...

</sp:SymmetricBinding>

 ...

</wsp:Policy>

4.2.2. Policy Metadata Location

In the Information Card Model, an Identity Provider MUST make the Security Policy

metadata for its IP/STS endpoints available. If a metadata location is used for this purpose,

the location URL MUST use the [HTTPS] scheme. An Identity Selector MAY retrieve the

Security Policy it will use to communicate with the IP/STS from that metadata location using

the mechanism specified in [WS-MetadataExchange].

4.3. Token Request and Response

For any given Information Card, an Identity Selector can obtain a Security Token from the

IP/STS for that Information Card. Tokens MUST be requested using the “Issuance Binding”

mechanism described in [WS-Trust 1.2] and [WS-Trust 1.3]. This section specifies

additional constraints and extensions to the token request and response messages between

the Identity Selector and the IP/STS.

The WS-Trust protocol requires that a token request be submitted by using the

wst:RequestSecurityToken element in the request message, and that a token response be

sent using the wst:RequestSecurityTokenResponse element in the response message. This

profile refers to the “Request Security Token” message as RST and the “Request Security

Token Response” message as RSTR in short.

The WS-Trust protocol allows for a token response to optionally provide multiple tokens by

using the wst:RequestSecurityTokenResponseCollection element in the response

message. This profile, however, requires that an Identity Provider MUST NOT use the

Version 1.5 Page 22 of 60

wst:RequestSecurityTokenResponseCollection element in the response. The token

response MUST consist of a single wst:RequestSecurityTokenResponse element.

4.3.1. Information Card Reference

When requesting a Security Token from the IP/STS, an Identity Selector MUST include the

Information Card reference in the body of the RST message as a top-level element

information item. The ic:InformationCardReference element in the Information Card,

including all of its [children], [attributes] and [in-scope namespaces], MUST be copied as an

immediate child of the RST element in the message as follows.

The following example illustrates the Information Card reference included in a RST message.

Example:

<wst:RequestSecurityToken>

 ...

 <ic:InformationCardReference>

 <ic:CardId>http://xyz.com/CardId/d795621fa01d454285f9</ic:CardId>

 <ic:CardVersion>1</ic:CardVersion>

 </ic:InformationCardReference>

 ...

</wst:RequestSecurityToken>

The IP/STS MAY fault with ic:InformationCardRefreshRequired to signal to the Service

Requester that the Information Card needs to be refreshed.

4.3.2. Claims and Other Token Parameters

A Relying Party‟s requirements of claims and other token parameters are expressed in its

policy using the sp:RequestSecurityTokenTemplate parameter within the sp:IssuedToken

policy assertion (see Section 3.1). If all token parameters are acceptable to the Identity

Selector, it MUST copy the content of this element (i.e. all of its [children] elements) into

the body of the RST message as top-level element information items. However, if optional

claims are requested by the Relying Party, requests for optional claims not selected by the

user MUST NOT be copied into the RST message.

4.3.3. Token Scope

The WS-Trust protocol allows a token requester to indicate the target where the issued

token will be used (i.e., token scope) by using the optional element wsp:AppliesTo in the

RST message. By default, an Identity Selector SHOULD NOT send token scope information

to the Identity Provider in token requests to protect user privacy. In other words, the

element wsp:AppliesTo is absent in the RST message.

However, if the Identity Provider requires it (see the modes of the ic:RequireAppliesTo

element described in Section 4.1.1.5), or if the Relying Party‟s token policy includes the

wsp:AppliesTo element in the sp:RequestSecurityTokenTemplate parameter, then an

Identity Selector MUST include token scope information in its token request as per the

behavior summarized in the following table.

<RequireAppliesTo> mode

in Information Card

<AppliesTo> element

present in RP policy

Resulting behavior of Identity

Selector

Mandatory Yes Send <AppliesTo> value from

RP policy in token request to IP.

Version 1.5 Page 23 of 60

Mandatory No Send the RP endpoint to which

token will be sent as the value

of <AppliesTo> in token request

to IP.

Optional Yes Send <AppliesTo> value from

RP policy in token request to IP.

Optional No Do not send <AppliesTo> in

token request to IP.

Not present Yes Fail

Not present No Do not send <AppliesTo> in

token request to IP.

The following example illustrates the token scope information included in a RST message

when it is sent to the Identity Provider.

Example:

<wst:RequestSecurityToken>

 <wsp:AppliesTo>

 <wsa:EndpointReference>

 <wsa:Address>http://ip.fabrikam.com</wsa:Address>

 <wsid:Identity>

 <ds:KeyInfo>

 <ds:X509Data>

 <ds:X509Certificate>...</ds:X509Certificate>

 </ds:X509Data>

 </ds:KeyInfo>

 </wsid:Identity>

 </wsa:EndpointReference>

 </wsp:AppliesTo>

 ...

</wst:RequestSecurityToken>

4.3.4. Client Pseudonym

A private personal identifier (PPID), defined in Section 8.5.14, identifies a Subject to a

Relying Party in a way such that a Subject‟s PPID at one Relying Party cannot be correlated

with the Subject‟s PPID at another Relying Party. If an Identity Provider offers the PPID

claim type then it MUST generate values for the claim that have this prescribed privacy

characteristic using data present in the RST request.

When the target scope information is sent in the token request using the wsp:AppliesTo

element, that information can be used by the IP/STS to generate the appropriate PPID

value. When token scope information is not sent, an Identity Selector SHOULD specify the

PPID value it would like to be used in the issued token by using the ic:PPID element in the

RST request. This SHOULD be produced as described in Section 4.3.4.1. The IP/STS MAY

use this value as is or as an input seed to a custom function to derive a value for the PPID

claim.

When PPID information is included by an Identity Selector in a token request, it MUST be

sent using the following schema element.

Syntax:

Version 1.5 Page 24 of 60

<ic:ClientPseudonym>

 <ic:PPID> xs:base64Binary </ic:PPID>

</ic:ClientPseudonym>

The following describes the attributes and elements listed in the schema outlined above:

.../ic:ClientPseudonym

This optional top-level element contains the PPID information item.

.../ic:ClientPseudonym/ic:PPID

This optional element contains the PPID that the client has submitted for use in the

issued token. The IP/STS MAY use this value as the input (a seed) to a custom function

and the result used in the issued token.

The following example illustrates the PPID information sent in a RST message.

Example:

<wst:RequestSecurityToken>

 <ic:ClientPseudonym>

 <ic:PPID>MIIEZzCCA9CgAwIBAgIQEmtJZc0=</ic:PPID>

 </ic:ClientPseudonym >

 ...

</wst:RequestSecurityToken>

When the target scope information is not sent in the token request to an IP/STS, the

Identity Provider MUST NOT record the PPID value or any other Client Pseudonym values

included in the RST message. It MUST NOT record the PPID claim value that it generates.

4.3.4.1. PPID

When token scope information is not sent in a token request to an IP/STS that supports the

PPID claim, an Identity Selector SHOULD compute the PPID information it sends in the RST

message as follows:

 Construct the RP PPID Seed as described in Section 8.6.1.

 Decode the base64 encoded value of the ic:HashSalt element of the Information

Card (see Section 7.1) to obtain SaltBytes.

 Decode the base64 encoded value of the ic:MasterKey element of the Information

Card (see Section 7.1) to obtain MasterKeyBytes.

 Hash the concatenation of MasterKeyBytes, RP PPID Seed, and SaltBytes using the

SHA256 hash function to obtain the Client Pseudonym PPID value.

Client Pseudonym PPID = SHA256 (MasterKeyBytes + RP PPID Seed + SaltBytes)

 Convert Client Pseudonym PPID to a base64 encoded string and send as the value of

the ic:PPID element in the RST request.

4.3.5. Proof Key for Issued Token

An issued token may have a symmetric proof key (symmetric key token), an asymmetric

proof key (asymmetric key token), or no proof key (bearer token). If no key type is

specified in the Relying Party policy, then an Identity Selector SHOULD request an

asymmetric key token from the IP/STS by default.

The optional wst:KeyType element in the RST request indicates the type of proof key

desired in the issued Security Token. The IP/STS may return the proof key and/or entropy

towards the proof key in the RSTR response. This section describes the behaviors for how

Version 1.5 Page 25 of 60

each proof key type is requested, who contributes entropy, and how the proof key is

computed and returned.

4.3.5.1. Symmetric Proof Key

When requesting a symmetric key token, an Identity Selector MUST submit entropy towards

the proof key by augmenting the RST request message as follows:

 The RST SHOULD include a wst:KeyType element with one of the two following URI

values, depending upon the version of WS-Trust being used:

http://schemas.xmlsoap.org/ws/2005/02/trust/SymmetricKey

http://docs.oasis-open.org/ws-sx/ws-trust/200512/SymmetricKey

 The RST MUST include a wst:BinarySecret element inside a wst:Entropy element

containing client-side entropy to be used as partial key material. The entropy is

conveyed as raw base64 encoded bits.

The size of the submitted entropy SHOULD be equal to the key size required in the Relying

Party policy. If no key size is specified by the Relying Party, then an Identity Selector

SHOULD request a key at least 256-bits in size, and submit an entropy of equal size to the

IP/STS.

Following is a sample RST request fragment that illustrates a symmetric key token request.

Example:

<wst:RequestSecurityToken>

 ...

 <wst:KeyType>

 http://schemas.xmlsoap.org/ws/2005/02/trust/SymmetricKey

 </wst:KeyType>

 <wst:KeySize>256</wst:KeySize>

 <wst:Entropy>

 <wst:BinarySecret>mQlxWxEiKOcUfnHgQpylcD7LYSkJplpE=</wst:BinarySecret>

 </wst:Entropy>

</wst:RequestSecurityToken>

When processing the token request, the IP/STS MAY:

a) accept the client entropy as the sole key material for the proof key,

b) accept the client entropy as partial key material and contribute additional server-side

entropy as partial key material to compute the proof key as a function of both partial

key materials, or

c) reject the client-side entropy and use server-side entropy as the sole key material

for the proof key.

For each of the cases above, the IP/STS MUST compute and return the proof key by

augmenting the RSTR response message as follows.

For case (a) where IP/STS accepts client entropy as the sole key material:

 The RSTR MUST NOT include a wst:RequestedProofToken element. The proof key is

implied and an Identity Selector MUST use the client-side entropy as the proof key.

For case (b) where IP/STS accepts client entropy and contributes additional

server entropy:

Version 1.5 Page 26 of 60

 The RSTR MUST include a wst:BinarySecret element inside a wst:Entropy element

containing the server-side entropy to be used as partial key material. The entropy is

conveyed as raw base64 encoded bits.

 The partial key material from the IP/STS MUST be combined (by each party) with the

partial key material from the client to determine the resulting proof key.

 The RSTR MUST include a wst:RequestedProofToken element containing a

wst:ComputedKey element to indicate how the proof key is to be computed. An

Identity Selector MUST support the P_SHA1 computed key mechanism defined in

[WS-Trust 1.2] or [WS-Trust 1.3] with the particulars below:

ComputedKey Value Meaning

http://schemas.xmlsoap.org/ws/

2005/02/trust/CK/PSHA1 or

http://docs.oasis-open.org/ws-

sx/ws-trust/200512/CK/PSHA1

The key is computed using P_SHA1 from the

TLS specification to generate a bit stream using

entropy from both sides. The exact form is:

 key = P_SHA1 (EntropyREQ, EntropyRES)

Following is a sample RSTR response fragment that illustrates a token response with partial

key material from the IP/STS and a computed proof key.

Example:

<wst:RequestSecurityTokenResponse>

 ...

 <wst:Entropy>

 <wst:BinarySecret>mQlxWxEiKOcUfnHgQpylcD7LYSkJplpE=</wst:BinarySecret>

 </wst:Entropy>

 <wst:RequestedProofToken>

 <wst:ComputedKey>
 http://schemas.xmlsoap.org/ws/2005/02/trust/CK/PSHA1
 </wst:ComputedKey>

 </wst:RequestedProofToken>

</wst:RequestSecurityTokenResponse>

For case (c) where IP/STS contributes server entropy as the sole key material:

 The RSTR MUST include a wst:BinarySecret element inside a

wst:RequestedProofToken element containing the specific proof key to be used. The

proof key is conveyed as raw base64 encoded bits.

Following is a sample RSTR response fragment that illustrates a token response with fully

specified proof key from the IP/STS.

Example:

<wst:RequestSecurityTokenResponse>

 ...

 <wst:RequestedProofToken>

 <wst:BinarySecret>

 mQlxWxEiKOcUfnHgQpylcDKOcUfnHg7LYSkJplpE=

 </wst:BinarySecret>

 </wst:RequestedProofToken>

</wst:RequestSecurityTokenResponse>

The following table summarizes the symmetric proof key computation rules to be used by an

Identity Selector:

Token Requester (Identity Token Issuer (IP/STS) Results

http://schemas.xmlsoap.org/ws/2005/02/trust/CK/PSHA1
http://schemas.xmlsoap.org/ws/2005/02/trust/CK/PSHA1
http://docs.oasis-open.org/ws-sx/ws-trust/200512/CK/PSHA1
http://docs.oasis-open.org/ws-sx/ws-trust/200512/CK/PSHA1

Version 1.5 Page 27 of 60

Selector)

Provides entropy Uses requester entropy

as proof key

No <wst:RequestedProofToken>

element present in RSTR. Proof

key is implied.

Provides entropy Uses requester entropy

and provides additional

entropy of its own

<wst:Entropy> element present

in RSTR containing issuer

supplied entropy.

<wst:RequestedProofToken>

element present in RSTR

containing computed key

mechanism.

Requestor and Issuer compute

proof key by combining both

entropies using the specified

computed key mechanism.

Provides entropy Uses own entropy as

proof key (rejects

requester entropy)

<wst:RequestedProofToken>

element present in RSTR

containing the proof key.

4.3.5.2. Asymmetric Proof Key

When requesting an asymmetric key token, an Identity Selector MUST generate an

ephemeral RSA key pair at least 1024-bits in size for use as the proof key. It MUST submit

the public key to the IP/STS by augmenting the RST request as follows:

 The RST MUST include a wst:KeyType element with one of the two following URI

values, depending upon the version of WS-Trust being used:

http://schemas.xmlsoap.org/ws/2005/02/trust/PublicKey

http://docs.oasis-open.org/ws-sx/ws-trust/200512/PublicKey

 The RST SOAP body MUST include a wst:UseKey element containing the public key

to be used as proof key in the returned token. The public key is present as a raw

RSA key in the form of a ds:RSAKeyValue element inside a ds:KeyValue element.

 The RST SOAP security header SHOULD include a supporting signature to prove

ownership of the corresponding private key. The ds:KeyInfo element within the

signature, if present, MUST include the same public key as in the wst:UseKey

element in the SOAP body.

 The supporting signature, if present, MUST be placed in the SOAP security header

where the signature for an endorsing supporting token would be placed as per the

security header layout specified in WS-SecurityPolicy.

Following is a sample RST request fragment that illustrates an asymmetric key based token

request containing the public key and proof of ownership of the corresponding private key.

Example:

<s:Envelope ... >

 <s:Header>

 ...

 <wsse:Security>

 ...

http://schemas.xmlsoap.org/ws/2005/02/trust/PublicKey

Version 1.5 Page 28 of 60

 <ds:Signature Id="_proofSignature">

 <!-- signature proving possession of submitted proof key -->

 ...

 <!-- KeyInfo in signature contains the submitted proof key -->

 <ds:KeyInfo>

 <ds:KeyValue>

 <ds:RSAKeyValue>

 <ds:Modulus>...</ds:Modulus>

 <ds:Exponent>...</ds:Exponent>

 </ds:RSAKeyValue>

 </ds:KeyValue>

 </ds:KeyInfo>

 </ds:Signature>

 </wsse:Security>

 </s:Header>

 <s:Body wsu:Id="req">

 <wst:RequestSecurityToken>

 ...

 <wst:KeyType>

 http://schemas.xmlsoap.org/ws/2005/02/trust/PublicKey

 </wst:KeyType>

 <wst:UseKey Sig="#_proofSignature">

 <ds:KeyInfo>

 <ds:KeyValue>

 <ds:RSAKeyValue>

 <ds:Modulus>...</ds:Modulus>

 <ds:Exponent>...</ds:Exponent>

 </ds:RSAKeyValue>

 </ds:KeyValue>

 </ds:KeyInfo>

 </wst:UseKey>

 </wst:RequestSecurityToken>

 </s:Body>

</s:Envelope>

If a supporting signature for the submitted proof key is not present in the token request,

the IP/STS MAY fail the request. If a supporting signature is present, the IP/STS MUST

verify the signature and MUST ensure that the RSA key included in the wst:UseKey element

and in the supporting signature are the same. If verification succeeds and the IP/STS

accepts the submitted public key for use in the issued token, then the token response MUST

NOT include a wst:RequestedProofToken element. The proof key is implied and an Identity

Selector MUST use the public key it submitted as the proof key.

The following table summarizes the asymmetric proof key rules used by an Identity

Selector:

Token Requester (Identity

Selector)

Token Issuer (IP/STS) Results

Provides ephemeral public

key for use as proof key

Uses requester supplied

proof key

No <wst:RequestedProofToken>

element present in RSTR. Proof

key is implied.

4.3.5.3. No Proof Key

When requesting a token with no proof key, an Identity Selector MUST augment the RST

request message as follows:

Version 1.5 Page 29 of 60

 The RST MUST include a wst:KeyType element with the following URI value if [WS-

Trust 1.2] is being used:

http://schemas.xmlsoap.org/ws/2005/05/identity/NoProofKey

or the RST MUST include a wst:KeyType element with the following URI value if [WS-

Trust 1.3] is being used:

http://docs.oasis-open.org/ws-sx/wstrust/200512/Bearer

Following is a sample RST request fragment that illustrates a bearer token request.

Example:

<wst:RequestSecurityToken>

 ...

 <wst:KeyType>

 http://schemas.xmlsoap.org/ws/2005/05/identity/NoProofKey

 </wst:KeyType>

</wst:RequestSecurityToken>

When processing the token request, if the IP/STS issues a SAML v1.1 bearer token then:

 It MUST specify “urn:oasis:names:tc:SAML:1.0:cm:bearer” as the subject

confirmation method in the token.

 It SHOULD include a saml:AudienceRestrictionCondition element restricting the

token to the target site URL submitted in the token request.

4.3.6. Display Token

An Identity Selector MAY request a Display Token – a representation of the claims carried in

the issued Security Token that can be displayed in an user interface – from an IP/STS as

part of the token request. To request a Display Token, the following optional element MUST

be included in the RST message as a top-level element information item.

Syntax:

<ic:RequestDisplayToken xml:lang="xs:language"? ... />

The following describes the attributes and elements listed in the schema outlined above:

/ic:RequestDisplayToken

This optional element is used to request an Identity Provider to return a Display Token

corresponding to the issued token.

/ic:RequestDisplayToken/@xml:lang

This optional attribute indicates a language identifier, using the language codes specified

in [RFC 3066], in which the Display Token content should be localized.

An IP/STS MAY respond to a Display Token request. If it does, it MUST use the following

element to return a Display Token for the issued Security Token in the RSTR message.

Syntax:

<ic:RequestedDisplayToken ...>

 <ic:DisplayToken xml:lang="xs:language" ... >

 [<ic:DisplayClaim Uri="xs:anyURI" ...>

 <ic:DisplayTag> xs:string </ic:DisplayTag> ?

 <ic:Description> xs:string </ic:Description> ?

 <ic:DisplayValue> xs:string </ic:DisplayValue> ?

 </ic:DisplayClaim>] +

 |

 [<ic:DisplayTokenText MimeType="xs:string">

Version 1.5 Page 30 of 60

 xs:string

 </ic:DisplayTokenText>]

 ...

 </ic:DisplayToken>

</ic:RequestedDisplayToken>

The following describes the attributes and elements listed in the schema outlined above:

/ic:RequestedDisplayToken

This optional element is used to return a Display Token for the Security Token returned

in the response.

/ic:RequestedDisplayToken/ic:DisplayToken

The returned Display Token.

/ic:RequestedDisplayToken/ic:DisplayToken/@xml:lang

This required attribute indicates a language identifier, using the language codes

specified in [RFC 3066], in which the Display Token content is localized.

/ic:RequestedDisplayToken/ic:DisplayToken/ic:DisplayClaim

This required element indicates an individual claim returned in the Security Token.

/ic:RequestedDisplayToken/ic:DisplayToken/ic:DisplayClaim/@Uri

This required attribute provides the unique identifier (URI) of the individual claim

returned in the Security Token.

/ic:RequestedDisplayToken/ic:DisplayToken/ic:DisplayClaim/ic:DisplayTag

This optional element provides a friendly name for the claim returned in the Security

Token.

/ic:RequestedDisplayToken/ic:DisplayToken/ic:DisplayClaim/ic:Description

This optional element provides a description of the semantics for the claim returned in

the Security Token.

/ic:RequestedDisplayToken/ic:DisplayToken/ic:DisplayClaim/ic:DisplayValue

This optional element provides the displayable value for the claim returned in the

Security Token.

/ic:RequestedDisplayToken/ic:DisplayToken/ic:DisplayTokenText

This element provides an alternative textual representation of the entire token as a

whole when the token content is not suitable for display as individual claims.

/ic:RequestedDisplayToken/ic:DisplayToken/ic:DisplayTokenText/@MimeType

This required attribute provides a MIME type specifying the format of the Display Token

content (e.g., “text/plain”).

The following example illustrates a returned Display Token corresponding to a Security

Token with two claims.

Example:

<ic:RequestedDisplayToken>

 <ic:DisplayToken xml:lang="en-us">

 <ic:DisplayClaim Uri="http://.../ws/2005/05/identity/claims/givenname">

 <ic:DisplayTag>Given Name</ic:DisplayTag>

 <ic:DisplayValue>John</ic:DisplayValue>

 </ic:DisplayClaim>

 <ic:DisplayClaim Uri="http://.../ws/2005/05/identity/claims/surname">

 <ic:DisplayTag>Last Name</ic:DisplayTag>

 <ic:DisplayValue>Doe</ic:DisplayValue>

 </ic:DisplayClaim>

Version 1.5 Page 31 of 60

 <ic:DisplayToken>

</ic:RequestedDisplayToken>

4.3.7. Token References

When an IP/STS returns the token requested by an Identity Selector, it MUST also include

an attached and an un-attached token reference for the issued security token using the

wst:RequestedAttachedReference and wst:RequestedUnattachedReference elements,

respectively, in the RSTR response message.

An Identity Selector is truly a conduit for the security tokens issued by an IP/STS and

required by an RP, and it should remain agnostic of the type of the security token passing

through it. Furthermore, a security token issued by an IP/STS may be encrypted directly for

the RP, thus preventing visibility into the token by the Identity Selector. However, an

Identity Selector (or a client application) needs to be able to use the issued security token

to perform security operations (such as signature or encryption) on a message sent to an

RP and thus needs a way to reference the token both when it is attached to a message and

when it is not. The attached and unattached token references returned by an IP/STS in the

RSTR message provide the necessary references that can be used for this purpose.

5. Authenticating to Identity Provider

The Information Card schema includes the element content necessary for an Identity

Provider to express what credential the user must use in order to authenticate to the IP/STS

when requesting tokens. This section defines the schema used to express the credential

descriptor for each supported credential type.

5.1. Username and Password Credential

When the Identity Provider requires a username and password as the credential type, the

following credential descriptor format MUST be used in the Information Card to specify the

required credential.

Syntax:

<ic:UserCredential>

 <ic:UsernamePasswordCredential>

 <ic:Username> xs:string </ic:Username> ?

 </ic:UsernamePasswordCredential>

</ic:UserCredential>

The following describes the attributes and elements listed in the schema outlined above:

.../ic:UsernamePasswordCredential

This element indicates that a username/password credential is needed.

.../ic:UsernamePasswordCredential/ic:Username

This optional element provides the username part of the credential for convenience. An

Identity Selector MUST prompt the user for the password. If the username is specified,

then its value MUST be copied into the username token used to authenticate to the

IP/STS; else an Identity Selector MUST prompt the user for the username as well.

Furthermore, the actual Security Policy of the IP/STS (expressed in its WSDL) MUST include

the sp:UsernameToken assertion requiring a username and password value.

Version 1.5 Page 32 of 60

5.2. Kerberos v5 Credential

When the Identity Provider requires a Kerberos v5 service ticket for the IP/STS as the

credential type, the following credential descriptor format MUST be used in the Information

Card to specify the required credential.

Syntax:

<ic:UserCredential>

 <ic:KerberosV5Credential />

</ic:UserCredential>

The following describes the attributes and elements listed in the schema outlined above:

.../ic:KerberosV5Credential

This element indicates that a Kerberos v5 credential is needed.

To enable the Service Requester to obtain a Kerberos v5 service ticket for the IP/STS, the

endpoint reference of the IP/STS in the Information Card or in the metadata retrieved from

it MUST include a “service principal name” identity claim (i.e. a wsid:Spn element) under

the wsid:Identity tag as defined in [Addressing-Ext].

Furthermore, the actual Security Policy of the IP/STS (expressed in its WSDL) MUST include

the sp:KerberosToken assertion requiring a Kerberos service ticket.

5.3. X.509v3 Certificate Credential

When the Identity Provider requires an X.509 v3 certificate for the user as the credential

type, where the certificate and keys are in a hardware-based smart card or a software-

based certificate, the following credential descriptor format MUST be used in the

Information Card to specify the required credential.

Syntax:

<ic:UserCredential>

 <ic:DisplayCredentialHint> xs:string </ic:DisplayCredentialHint>

 <ic:X509V3Credential>

 <ds:X509Data>

 <wsse:KeyIdentifier

 ValueType="http://docs.oasisopen.org/wss/oasiswss-soap-

messagesecurity-1.1#ThumbPrintSHA1"

 EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis200401-wss-

soap-message-security-1.0#Base64Binary">

 xs:base64binary

 </wsse:KeyIdentifier>

 </ds:X509Data>

 </ic:X509V3Credential>

</ic:UserCredential>

The following describes the attributes and elements listed in the schema outlined above:

.../ic:DisplayCredentialHint

This optional element provides a user hint string which can be used to prompt the user,

for example, to insert the appropriate smart card into the reader.

.../ic:X509Credential

This element indicates that a X.509 certificate credential is needed.

.../ic:X509V3Credential/ds:X509Data/wsse:KeyIdentifier

This element provides a key identifier for the X.509 certificate based on the SHA1 hash

of the entire certificate content expressed as a “thumbprint.” Note that the extensibility

Version 1.5 Page 33 of 60

point in the ds:X509Data element is used to add wsse:KeyIdentifier as a child

element.

Furthermore, the actual Security Policy of the IP/STS, expressed in its WSDL, MUST include

the sp:X509Token assertion requiring an X.509v3 certificate.

5.4. Self-issued Token Credential

When the Identity Provider requires a self-issued token as the credential type, the following

credential descriptor format MUST be used in the Information Card to specify the required

credential.

Syntax:

<ic:UserCredential>

 <ic:SelfIssuedCredential>

 <ic:PrivatePersonalIdentifier>

 xs:base64Binary

 </ic:PrivatePersonalIdentifier>

 </ic:SelfIssuedCredential>

</ic:UserCredential>

The following describes the attributes and elements listed in the schema outlined above:

.../ic:SelfIssuedCredential

This element indicates that a self-issued token credential is needed.

.../ic:SelfIssuedCredential/ic:PrivatePersonalIdentifier

This required element provides the value of the PPID claim asserted in the self-issued

token used previously to register with the IP/STS (see Section 8.5.14).

Furthermore, the actual Security Policy of the IP/STS (expressed in its WSDL) MUST include

the sp:IssuedToken assertion requiring a self-issued token with exactly one claim, namely,

the PPID.

6. Faults

In addition to the standard faults described in WS-Addressing, WS-Security and WS-Trust,

this profile defines the following additional faults that may occur when interacting with an

RP or an IP. The binding of the fault properties (listed below) to a SOAP 1.1 or SOAP 1.2

fault message is described in [WS-Addressing]. If the optional [Detail] property for a fault

includes any specified content, then the corresponding schema fragment is included in the

listing below.

6.1. Relying Party

The following faults MAY occur when submitting Security Tokens to an RP per its Security

Policy.

[action] http://www.w3.org/2005/08/addressing/soap/fault

[Code] S:Sender

[Subcode] ic:RequiredClaimMissing

[Reason] A required claim is missing from the Security Token.

[Detail] [URI of missing claim]
<ic:ClaimType Uri="[Claim URI]" />

Version 1.5 Page 34 of 60

[action] http://www.w3.org/2005/08/addressing/soap/fault

[Code] S:Sender

[Subcode] ic:InvalidClaimValue

[Reason] A claim value asserted in the Security Token is invalid.

[Detail] [URI of invalid claim]
<ic:ClaimType Uri="[Claim URI]" />

6.2. Identity Provider

The following faults MAY occur when requesting Security Tokens from an IP using

Information Cards.

[action] http://www.w3.org/2005/08/addressing/soap/fault

[Code] S:Sender

[Subcode] ic:MissingAppliesTo

[Reason] The request is missing Relying Party identity information.

[Detail] (None defined.)

[action] http://www.w3.org/2005/08/addressing/soap/fault

[Code] S:Sender

[Subcode] ic:InvalidProofKey

[Reason] Invalid proof key specified in request.

[Detail] (None defined.)

[action] http://www.w3.org/2005/08/addressing/soap/fault

[Code] S:Sender

[Subcode] ic:UnknownInformationCardReference

[Reason] Unknown Information Card reference specified in request.

[Detail] [Unknown Information Card reference]
<ic:InformationCardReference>

 <ic:CardId>[card ID]</ic:CardId>

 <ic:CardVersion>[version]</ic:CardVersion>

</ic:InformationCardReference>

Version 1.5 Page 35 of 60

[action] http://www.w3.org/2005/08/addressing/soap/fault

[Code] S:Sender

[Subcode] ic:FailedRequiredClaims

[Reason] Could not satisfy required claims in request;

construction of token failed

[Detail] [URIs of claims that could not be satisfied]
<ic:ClaimType Uri="[Claim URI]" />

...

[action] http://www.w3.org/2005/08/addressing/soap/fault

[Code] S:Sender

[Subcode] ic:InformationCardRefreshRequired

[Reason] Stale Information Card reference specified in request;

Information Card should be refreshed

[Detail] [Information Card reference that needs refreshing]
<ic:InformationCardReference>

 <ic:CardId>[card ID]</ic:CardId>

 <ic:CardVersion>[version]</ic:CardVersion>

</ic:InformationCardReference>

6.2.1. Identity Provider Custom Error Messages

Identity Providers MAY return custom error messages to Identity Selectors via SOAP faults

that can be displayed by the Identity Selector user interface. The error message MUST be

communicated as an S:Text element within the S:Reason element of a SOAP fault

message. Multiple S:Text elements MAY be returned with different xml:lang values and

the Identity Selector SHOULD use the one matching the user‟s locale, if possible.

Example:

<s:Envelope xmlns:a="http://www.w3.org/2005/08/addressing"

xmlns:s="http://www.w3.org/2003/05/soap-envelope">

 <s:Header>

 <a:Action

s:mustUnderstand="1">http://www.w3.org/2005/08/addressing/soap/fault</a:Actio

n>

 </s:Header>

 <s:Body>

 <s:Fault>

 <s:Code>

 <s:Value>s:Sender</s:Value>

 </s:Code>

 <s:Reason>

 <s:Text xml:lang="en">Message in English ...</</s:Text>

 <s:Text xml:lang="es-ES">Message in the Spanish of Spain ...</s:Text>

 </s:Reason>

 </s:Fault>

 </s:Body>

</s:Envelope>

Version 1.5 Page 36 of 60

7. Information Cards Transfer Format

This section defines how collections of Information Cards are transferred between Identity

Selectors. The cards collection is always transferred after encrypting it with a key derived

from a user specified password. Section 7.1 describes the transfer format of the collection in

the clear, whereas Section 7.1.2 describes the transfer format after the necessary

encryption is applied.

7.1. Pre-Encryption Transfer Format

Each Information Card in the transfer stream will contain metadata and key material

maintained by the originating Identity Selector in addition to the original Information Card

metadata. If an Identity Selector includes a co-resident Self-issued Identity Provider

(described in Section 8), an exported self-issued card may also contain any associated

claims information.

The XML schema used for the transfer format is defined below:

Syntax:

<ic:RoamingStore>

 <ic:RoamingInformationCard> +

 <ic:InformationCardMetaData>

 [Information Card]

 <ic:IsSelfIssued> xs:boolean </ic:IsSelfIssued>

 <ic:PinDigest> xs:base64Binary </ic:PinDigest> ?

 <ic:HashSalt> xs:base64Binary </ic:HashSalt>

 <ic:TimeLastUpdated> xs:dateTime </ic:TimeLastUpdated>

 <ic:IssuerId> xs:base64Binary </ic:IssuerId>

 <ic:IssuerName> xs:string </ic:IssuerName>

 <ic:BackgroundColor> xs:int </ic:BackgroundColor>

 </ic:InformationCardMetaData>

 <ic:InformationCardPrivateData> ?

 <ic:MasterKey> xs:base64Binary </ic:MasterKey>

 <ic:ClaimValueList> ?

 <ic:ClaimValue Uri="xs:anyURI" ...> +

 <ic:Value> xs:string </ic:Value>

 </ic:ClaimValue>

 </ic:ClaimValueList>

 </ic:InformationCardPrivateData>

 ...

 </ic:RoamingInformationCard>

 ...

</ic:RoamingStore>

The following describes the attributes and elements listed in the schema outlined above:

/ic:RoamingStore

The collection of Information Cards selected for transfer.

/ic:RoamingStore/ic:RoamingInformationCard (one or more)

An individual Information Card within the transfer stream.

For brevity, the prefix string “/ic:RoamingStore/ic:RoamingInformationCard” in the element

names below is shortened to “...”.

.../ic:InformationCardMetaData

This required element contains the metadata for an Information Card.

Version 1.5 Page 37 of 60

.../ic:InformationCardMetaData/[Information Card]

The original content of the Information Card as issued by the Identity Provider

(described in Section 4.1.1).

.../ic:InformationCardMetaData/ic:IsSelfIssued

This required element indicates if the card is self-issued (“true”) or not (“false”).

.../ic:InformationCardMetaData/ic:PinDigest

This optional element contains a digest of the user-specified PIN information if the card

is PIN-protected. The digest contains the base64 encoded bytes of the SHA1 hash of the

user-specified PIN represented as Unicode bytes.

.../ic:InformationCardMetaData/ic:HashSalt

This optional element contains a random per-card entropy value used for computing the

Relying Party specific PPID claim when the card is used at a Relying Party and for

computing the Client Pseudonym PPID value sent an Identity Provider.

.../ic:InformationCardMetaData/ic:TimeLastUpdated

This required element contains the date and time when the card was last updated.

.../ic:InformationCardMetaData/ic:IssuerId

This required element contains an identifier for the Identity Provider with which a self-

issued credential descriptor in a card issued by that Identity Provider can be resolved to

the correct self-issued card. The element content may be empty.

.../ic:InformationCardMetaData/ic:IssuerName

This required element contains a friendly name of the card issuer.

.../ic:InformationCardMetaData/ic:BackgroundColor

This required element contains the background color used to display the card image.

.../ic:InformationCardMetaData/{any}

This is an extensibility point to allow additional metadata to be included.

.../ic:InformationCardPrivateData

This required element contains the private data for an Information Card.

.../ic:InformationCardPrivateData/ic:MasterKey

This required element contains a base64 encoded 256-bit random number that provides

a “secret key” for the Information Card. This key is used for computing the Relying

Party specific PPID claim when the card is used at a Relying Party and for computing the

Client Pseudonym PPID value sent to an Identity Provider. This element is present both

for self-issued and managed Information Cards.

.../ic:InformationCardPrivateData/ic:ClaimValueList

This optional element is a container for the set of claim types and their corresponding

values embodied by a self-issued card.

.../ic:InformationCardPrivateData/ic:ClaimValueList/ic:ClaimValue (one or more)

This required element is a container for an individual claim, i.e., a claim type and its

corresponding value.

.../ic:InformationCardPrivateData/ic:ClaimValueList/ic:ClaimValue/@Uri

This required attribute contains a URI that identifies the specific claim type.

.../ic:InformationCardPrivateData/ic:ClaimValueList/ic:ClaimValue/ic:Value

This required element contains the value for an individual claim type.

Version 1.5 Page 38 of 60

…/@{any}

This is an extensibility point to allow additional attributes to be specified. While an

Identity Selector MAY ignore any extensions it does not recognize it SHOULD preserve

those that it does not recognize and emit them in the respective

ic:RoamingStore/ic:RoamingInformationCard element when updating information

using the Information Cards Transfer Format.

…/{any}

This is an extensibility point to allow additional metadata elements to be specified.

While an Identity Selector MAY ignore any extensions it does not recognize it SHOULD

preserve those that it does not recognize and emit them in the respective

ic:RoamingStore/ic:RoamingInformationCard element when updating information

using the Information Cards Transfer Format.

/ic:RoamingStore/@{any}

This is an extensibility point to allow additional attributes to be specified. While an

Identity Selector MAY ignore any extensions it does not recognize it SHOULD preserve

those that it does not recognize and emit them in the respective ic:RoamingStore

element when updating information using the Information Cards Transfer Format.

/ic:RoamingStore/{any}

This is an extensibility point to allow additional metadata elements to be specified.

While an Identity Selector MAY ignore any extensions it does not recognize it SHOULD

preserve those that it does not recognize and emit them in the respective

ic:RoamingStore element when updating information using the Information Cards

Transfer Format.

7.1.1. PIN Protected Card

When an Information Card is PIN protected, in addition to storing a digest of the PIN in the

card data, the master key and claim values associated with the card MUST also be

encrypted with a key derived from the user-specified PIN.

The PKCS-5 based key derivation method MUST be used with the input parameters

summarized in the table below for deriving the encryption key from the PIN.

Key derivation method PBKDF1 per [RFC 2898] (section 5.1)

Input parameters:

 Password UTF-8 encoded octets of PIN

 Salt 16-byte random number (actual value

stored along with master key)

 Iteration count 1000 (actual value stored along with

master key)

 Key length 32 octets

 Hash function SHA-256

The encryption method and the corresponding parameters that MUST be used are

summarized in the table below.

Version 1.5 Page 39 of 60

Encryption method AES-256

Parameters:

 Padding As per PKCS-7 standard

 Mode CBC

 Block size 16 bytes (as required by AES)

In a PIN-protected card, the encrypted content of the master key and the claim value fields

are described below.

.../ic:InformationCardPrivateData/ic:MasterKey

This element MUST contain a base64 encoded byte array comprised of the encryption

parameters and the encrypted master key serialized as per the binary structure

summarized in the table below.

Field Offset Size (bytes)

Version (for internal use) 0 1

Salt used for key-derivation method 1 16

Iteration count used for key-derivation method 17 4

Initialization Vector (IV) used for encryption 21 16

Encrypted master key 37 master key

length

.../ic:InformationCardPrivateData/ic:ClaimValueList/ic:ClaimValue/ic:Value

This element MUST contain a base64 encoded byte array comprised of the encrypted

claim value. The encryption parameters used are taken from those serialized into the

master key field and summarized in the table above.

7.1.2. Computing the ic:IssuerId

The ic:IssuerId value used for a card when representing it in the Information Cards

Transfer Format SHOULD be computed as a function of the ds:KeyInfo field of the envelope

digitally signed by the Identity Provider. Specifically:

 Compute IP Identifier in the same manner as RP Identifier in Section 8.6.1, except

that the certificate from ds:KeyInfo is used, rather than the Relying Party‟s.

Use the IP Identifier as the ic:IssuerId value.

The ic:IssuerId value SHOULD be the empty string for self-issued cards.

7.1.3. Computing the ic:IssuerName

The ic:IssuerName value used for a card when representing it in the Information Cards

Transfer Format SHOULD be computed as a function of the ds:KeyInfo field of the envelope

digitally signed by the Identity Provider. Specifically, if the certificate from ds:KeyInfo is

an extended validation (EV) certificate [EV Cert], then set ic:IssuerName to the

Organization Name (O) field value from the certificate, otherwise set ic:IssuerName to the

Common Name (CN) field value from the certificate.

Version 1.5 Page 40 of 60

7.1.4. Creating the ic:HashSalt

A random ic:HashSalt value for a card SHOULD be created by the Identity Selector when

that card is created from the ic:InformationCard data provided by an Identity Provider.

7.2. Post-Encryption Transfer Format

The transfer stream MUST be encrypted with a key derived from a user specified password.

The XML schema used for the encrypted transfer stream is defined below:

Syntax:

Byte-order-mark

<?xml version="1.0" encoding="utf-8"?>

<ic:EncryptedStore>

 <ic:StoreSalt> xs:base64Binary </ic:StoreSalt>

 <xenc:EncryptedData>

 <xenc:CipherData>

 <xenc:CipherValue> ... </xenc:CipherValue>

 </xenc:CipherData>

 </xenc:EncryptedData>

</ic:EncryptedStore>

...

The following describes the elements listed in the XML schema outlined above:

Byte-order-mark

The first three bytes in the stream containing the values {0xEF, 0xBB, 0xBF} constitutes

a “byte order mark”.

/ic:EncryptedStore

The top-level container element for the encrypted transfer stream.

/ic:EncryptedStore/ic:StoreSalt

This required element contains the random salt used as a parameter for the key

derivation function to derive the encryption key from a user-specified password.

/ic:EncryptedStore/xenc:EncryptedData/xenc:CipherData/xenc:CipherValue

This element contains a base64 encoded byte array containing the ciphertext

corresponding to the clear text transfer stream described in Section 7.1.

@{any}

This is an extensibility point to allow additional attributes to be specified. While an

Identity Selector MAY ignore any extensions it does not recognize it SHOULD preserve

those that it does not recognize and emit them when updating information using the

Information Cards Transfer Format.

{any}

This is an extensibility point to allow additional metadata elements to be specified.

While an Identity Selector MAY ignore any extensions it does not recognize it SHOULD

preserve those that it does not recognize and emit them when updating information

using the Information Cards Transfer Format.

The remainder of this section describes the element content of the xenc:CipherValue

element in the schema outline above. Specifically, it describes the encryption method used

and the format of the encrypted content.

The following table defines two symbolic constants, namely EncryptionKeySalt and

IntegrityKeySalt, and their corresponding values used by the key derivation and the

encryption methods described below to encrypt the transfer stream.

Version 1.5 Page 41 of 60

EncryptionKeySalt { 0xd9, 0x59, 0x7b, 0x26, 0x1e, 0xd8,

0xb3, 0x44, 0x93, 0x23, 0xb3, 0x96,

0x85, 0xde, 0x95, 0xfc }

IntegrityKeySalt { 0xc4, 0x01, 0x7b, 0xf1, 0x6b, 0xad,

0x2f, 0x42, 0xaf, 0xf4, 0x97, 0x7d, 0x4,

0x68, 0x3, 0xdb }

The transfer stream content is encrypted with a key derived from a user-specified password.

The PKCS-5 based key derivation method MUST be used with the input parameters

summarized in the table below for deriving the key from the password.

Key derivation method PBKDF1 per [RFC 2898] (section 5.1)

Input parameters:

 Password UTF-8 encoded octets of user-specified

password

 Salt 16-byte random number (actual value

stored in the ic:StoreSalt field)

 Iteration count 1000

 Key length 32 octets

 Hash function SHA-256

The PKCS-5 key derived as per the preceding table MUST be further hashed with a 16-byte

salt using the SHA256 hash function, and the resulting value used as the encryption key.

The order in which the values used MUST be hashed is as follows:

Encryption Key = SHA256 (EncryptionKeySalt + PKCS5-derived-key)

Further, to provide an additional integrity check at the time of import, a “hashed integrity

code” MUST be computed as follows and included along with the encrypted transfer stream

content.

 The PKCS-5 key derived as per the preceding table MUST be further hashed with a

16-byte salt using the SHA256 hash function, and the resulting value used as the

integrity key. The order in which the values used MUST be hashed is as follows:

Integrity Key = SHA256 (IntegrityKeySalt + PKCS5-derived-key)

 The last block of the clear text transfer stream MUST be captured and further hashed

with the integrity key (IK) and the initialization vector (IV) using the SHA256 hash

function, and the resulting value used as the hashed integrity code. The order in

which the values used MUST be hashed is as follows:

Hashed Integrity Code = SHA256 (IV + IK + Last-block-of-clear-text)

The encryption method and the corresponding parameters that MUST be used to encrypt the

transfer stream are summarized in the table below.

Version 1.5 Page 42 of 60

Encryption method AES-256

Parameters:

 Padding As per PKCS-7 standard

 Mode CBC

 Block size 16 bytes (as required by AES)

The element content of xenc:CipherValue MUST be a base64 encoded byte array

comprised of the initialization vector used for encryption, the hashed integrity code (as

described above), and the encrypted transfer stream. It MUST be serialized as per the

binary structure summarized in the table below.

Field Offset Size (bytes)

Initialization Vector (IV) used for encryption 0 16

Hashed integrity code 16 32

Ciphertext of transfer stream 48 Arbitrary

8. Simple Identity Provider Profile

A simple Identity Provider, called the “Self-issued Identity Provider” (SIP), is one which

allows users to self-assert identity in the form of self-issued tokens. An Identity Selector

MAY include a co-resident Self-issued Identity Provider that conforms to the Simple Identity

Provider Profile defined in this section. This profile allows self-issued identities created

within one Identity Selector to be used in another Identity Selector such that users do not

have to reregister at a Relying Party when switching Identity Selectors. Because of the co-

location there is data and metadata specific to an Identity Provider that need to be

shareable between Identity Selectors.

8.1. Self-Issued Information Card

The ic:Issuer element within an Information Card provides a logical name for the issuer of

the Information Card. An Information Card issued by a SIP (i.e., a self-issued Information

Card) MUST use the special URI below as the value of the ic:Issuer element in the

Information Card.

URI:

http://schemas.xmlsoap.org/ws/2005/05/identity/issuer/self

8.2. Self-Issued Token Characteristics

The self-issued tokens issued by a SIP MUST have the following characteristics:

 The token type of the issued token MUST be SAML 1.1 which MUST be identified by

either of the following token type URIs:

o urn:oasis:names:tc:SAML:1.0:assertion, or

o http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1.

 The signature key used in the issued token MUST be a 2048-bit asymmetric RSA key

which identifies the issuer.

Version 1.5 Page 43 of 60

 The issuer of the token, indicated by the value of the saml:Issuer attribute on the

saml:Assertion root element, MUST be identified by the following URI defined in

Section 3.1.1 representing the issuer “self”.

http://schemas.xmlsoap.org/ws/2005/05/identity/issuer/self

 The issued token MUST contain the saml:Conditions element specifying:

o the token validity interval using the NotBefore and NotOnOrAfter attributes,

and

o the saml:AudienceRestrictionCondition element restricting the token to a

specific target scope (i.e., a specific recipient of the token).

 The saml:NameIdentifier element SHOULD NOT be used to specify the Subject of

the token.

 The subject confirmation method MUST be specified as one of:

o urn:oasis:names:tc:SAML:1.0:cm:holder-of-key, or

o urn:oasis:names:tc:SAML:1.0:cm:bearer (for Browser based applications).

 When the subject confirmation method is “holder of key”, the subject confirmation

key (also referred to as the proof key) MUST be included in the token in the

ds:KeyInfo child element under the saml:SubjectConfirmation element. The proof

key MUST be encoded in the token as follows:

o For symmetric key tokens, the proof key is encrypted to the recipient of the

token in the form of a xenc:EncryptedKey child element. The default size of

the key is 256 bits, but a different size may be specified by the Relying Party.

o For asymmetric key tokens, the proof key is a public RSA key value specified

as a ds:RSAKeyValue child element under ds:KeyValue element. The default

size of the key is 2048 bits.

 The issued token MUST contain a single attribute statement (i.e., a single

saml:AttributeStatement element) containing the subject confirmation data and

the required claims (called attributes in a SAML token).

 The claim types supported by the self-issued token SHOULD include those listed in

Section 8.4.

 The claims asserted in the saml:AttributeStatement element of the issued token

MUST be named as follows using the claim type definitions in the XML schema file

referenced in Section 8.4. For each claim represented by a saml:Attribute element,

o the AttributeName attribute is set to the NCname of the corresponding claim

type defined in the XML schema file, and

o the AttributeNamespace attribute is set to the target namespace of the XML

schema file, namely

http://schemas.xmlsoap.org/ws/2005/05/identity/claims

The XML digital signature [XMLDSIG] profile used to sign a self-issued token MUST be as

follows:

 Uses the enveloped signature format identified by the transform algorithm identifier

“http://www.w3.org/2000/09/xmldsig#enveloped-signature”. The token signature

Version 1.5 Page 44 of 60

contains a single ds:Reference containing a URI reference to the AssertionID

attribute value of the root element of the SAML token.

 Uses the RSA signature method identified by the algorithm identifier

“http://www.w3.org/2000/09/xmldsig#rsa-sha1”.

 Uses the exclusive canonicalization method identified by the algorithm identifier

“http://www.w3.org/2001/10/xml-exc-c14n#” for canonicalizing the token content

as well as the signature content.

 Uses the SHA1 digest method identified by the algorithm identifier

“http://www.w3.org/2000/09/xmldsig#sha1” for digesting the token content being

signed.

 No other transforms, other than the ones listed above, are used in the enveloped

signature.

 The ds:KeyInfo element is always present in the signature carrying the signing RSA

public key in the form of a ds:RSAKeyValue child element.

Following is an example of a self-issued signed Security Token containing three claims.

Example:

<Assertion xmlns="urn:oasis:names:tc:SAML:1.0:assertion"

 AssertionID="urn:uuid:08301dba-d8d5-462f-85db-dec08c5e4e17"

 Issuer="http://schemas.xmlsoap.org/ws/2005/05/identity/issuer/self"

 IssueInstant="2004-10-06T16:44:20.00Z"

 MajorVersion="1" MinorVersion="1">

 <Conditions NotBefore="2004-10-06T16:44:20.00Z"

 NotOnOrAfter="2004-10-06T16:49:20.00Z">

 <AudienceRestrictionCondition>

 <Audience>http://www.relying-party.com</Audience>

 </AudienceRestrictionCondition>

 </Conditions>

 <AttributeStatement>

 <Subject>

 <!-- Content here differs; see examples that follow -->

 </Subject>

 <Attribute AttributeName="privatpersonalidentifier"

AttributeNamespace="http://schemas.xmlsoap.org/ws/2005/05/identity/claims">

 <AttributeValue>

 f8301dba-d8d5a904-462f0027-85dbdec0

 </AttributeValue>

 </Attribute>

 <Attribute AttributeName="givenname"

AttributeNamespace="http://schemas.xmlsoap.org/ws/2005/05/identity/claims">

 <AttributeValue>dasf</AttributeValue>

 </Attribute>

 <Attribute AttributeName="emailaddress"

AttributeNamespace="http://schemas.xmlsoap.org/ws/2005/05/identity/claims">

 <AttributeValue>dasf@mail.com</AttributeValue>

 </Attribute>

 </AttributeStatement>

 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

 <SignedInfo>

 <CanonicalizationMethod

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 <SignatureMethod

Version 1.5 Page 45 of 60

 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <Reference URI="urn:uuid:08301dba-d8d5-462f-85db-dec08c5e4e17">

 <Transforms>

 <Transform

 Algorithm="http://.../2000/09/xmldsig#enveloped-signature"/>

 <Transform

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 </Transforms>

 <DigestMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <DigestValue>vpnIyEi4R/S4b+1vEH4gwQ9iHsY=</DigestValue>

 </Reference>

 </SignedInfo>

 <SignatureValue>...</SignatureValue>

 <!-- token signing key -->

 <KeyInfo>

 <KeyValue>

 <RSAKeyValue>

 <Modulus>... utnQyEi8R/S4b+1vEH4gwR9ihsV ...</Modulus>

 <Exponent>AQAB</Exponent>

 </RSAKeyValue>

 </KeyValue>

 </KeyInfo>

 </Signature>

</Assertion>

The content of the saml:Subject element in the self-issued token differs based on the

subject confirmation method and the type of proof key used. The following examples

illustrate each of the three variations of the content of this element.

The following example illustrates the content of the saml:Subject element when subject

confirmation method is “holder of key” using a symmetric proof key.

Example:

<Subject>

 <SubjectConfirmation>

 <ConfirmationMethod>

 urn:oasis:names:tc:SAML:1.0:cm:holder-of-key

 </ConfirmationMethod>

 <ds:KeyInfo>

 <!-- symmetric proof key encrypted to recipient -->

 <xenc:EncryptedKey>

 <xenc:EncryptionMethod

 Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p"/>

 <ds:KeyInfo>

 <ds:X509Data>

 <wsse:KeyIdentifier

 ValueType="http://docs.oasis-open.org/wss/2004/xx/oasis-2004xx-

wss-soap-message-security-1.1#ThumbprintSHA1">

 EdFoIaAeja85201XTzjNMVWy7532jUYtrx=

 </wsse:KeyIdentifier>

 </ds:X509Data>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>

 AuFhiu72+1kaJiAuFhiu72+1kaJi=

 </xenc:CipherValue>

Version 1.5 Page 46 of 60

 </xenc:CipherData>

 </xenc:EncryptedKey>

 </ds:KeyInfo>

 </SubjectConfirmation>

</Subject>

The following example illustrates the content of the saml:Subject element when subject

confirmation method is “holder of key” using an asymmetric proof key.

Example:

<Subject>

 <SubjectConfirmation>

 <ConfirmationMethod>

 urn:oasis:names:tc:SAML:1.0:cm:holder-of-key

 </ConfirmationMethod>

 <ds:KeyInfo>

 <!-- asymmetric RSA public key as proof key -->

 <KeyValue>

 <RSAKeyValue>

 <Modulus>>... FntQyKi6R/E4b+1vDH4gwS5ihsU ...</Modulus>

 <Exponent>AQAB</Exponent>

 </RSAKeyValue>

 </KeyValue>

 </ds:KeyInfo>

 </SubjectConfirmation>

</Subject>

The following example illustrates the content of the saml:Subject element when subject

confirmation method is “bearer” using no proof key.

Example:

<Subject>

 <SubjectConfirmation>

 <ConfirmationMethod>

 urn:oasis:names:tc:SAML:1.0:cm:bearer

 </ConfirmationMethod>

 </SubjectConfirmation>

</Subject>

8.3. Self-Issued Token Encryption

One of the goals of the Information Card Model is to ensure that any claims are exposed

only to the Relying Party intended by the user. For this reason, the SIP SHOULD encrypt the

self-issued token under the key of the Relying Party. This guarantees that a token intended

for one Relying Party cannot be decoded by nor be meaningful to another Relying Party. As

described in Section 9.3, when the Relying Party is not identified by a certificate, because

no key is available for the Relying Party in this case, the token can not be encrypted, but

SHOULD still be signed.

When a self-issued token is encrypted, the XML encryption [XMLENC] standard MUST be

used. The encryption construct MUST use encrypting the self-issued token with a randomly

generated symmetric key which in turn is encrypted to the Relying Party‟s public key taken

from its X.509 v3 certificate. The encrypted symmetric key MUST be placed in an

xenc:EncryptedKey element within the xenc:EncryptedData element carrying the

encrypted Security Token.

The XML encryption [XMLENC] profile that MUST be used for encrypting the key and the

token is as follows:

Version 1.5 Page 47 of 60

 Uses the RSA-OAEP key wrap method identified by the algorithm identifier

“http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p” for encrypting the

encryption key.

 Uses the AES256 with CBC encryption method identified by the algorithm

“http://www.w3.org/2001/04/xmlenc#aes256-cbc” for encrypting the token. The

padding method used is as per the PKCS-7 standard in which the number of octets

remaining in the last block is used as the padding octet value.

 The ds:KeyInfo element is present in the encrypted key specifying the encryption

key information in the form of a Security Token reference.

Following is an illustration of a self-issued token encrypted to a Relying Party using the

encryption structure described above.

Example:

<xenc:EncryptedData Type="http://www.w3.org/2001/04/xmlenc#Element">

 <xenc:EncryptionMethod

 Algorithm="http://www.w3.org/2001/04/xmlenc#aes256-cbc" />

 <ds:KeyInfo>

 <xenc:EncryptedKey>

 <xenc:EncryptionMethod

 Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p">

 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 </xenc:EncryptionMethod

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentifier

 ValueType="http://docs.oasis-open.org/wss/2004/xx/oasis-2004xx-

wss-soap-message-security-1.1#ThumbprintSHA1"

 EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis200401-

wss-soap-message-security-1.0#Base64Binary">

 +PYbznDaB/dlhjIfqCQ458E72wA=

 </wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>...Ukasdj8257Fjwf=</xenc:CipherValue>

 </xenc:CipherData>

 </xenc:EncryptedKey>

 </ds:KeyInfo>

 <xenc:CipherData>

 <!-- Start encrypted Content

 <Assertion xmlns="urn:oasis:names:tc:SAML:1.0:assertion"

 AssertionID="urn:uuid:08301dba-d8d5-462f-85db-dec08c5e4e17" ...>

 ...

 </Assertion>

 End encrypted content -->

 <xenc:CipherValue>...aKlh4817JerpZoDofy90=</xenc:CipherValue>

 </xenc:CipherData>

</xenc:EncryptedData>

8.4. Self-Issued Token Signing Key

The RSA key used to sign a self-issued token presented to a Relying Party also represents a

unique identifier for the Subject of the token. In order to prevent the key from becoming a

correlation identifier across relying parties, a SIP SHOULD use a different key to sign a self-

Version 1.5 Page 48 of 60

issued token for each Relying Party where the card is used. In other words, the RSA key

used to sign the self-issued token is pair-wise unique for a given Information Card and RP

combination. To allow self-issued identities created by a SIP within one Identity Selector to

be used in another, the signing keys used by the two SIPs should be the same.

This section specifies the “processing rules” that SHOULD be used by a SIP to derive the

RSA key used to sign the self-issued token for a combination of an Information Card and an

RP where the card is used. Each self-issued Information Card contains a 256-bit secret

random number, called the “master key” (see Section 7.1), that is used as the secret

entropy in deriving the token signing RSA key. (Managed Information Cards also have a

master key that is used in the Client Pseudonym PPID calculation, as per Section 4.3.4.1.)

Key derivation is done according to the ANSI X9.31 standard for key generation which starts

with requiring the use of six random values denoted by Xp1, Xp2, Xq1, Xq2, Xp, and Xq. The

processing rules described here enunciate how to transform the master key in an

Information Card into the six random inputs for the X9.31 key generation process. The

actual key computation algorithm in the X9.31 standard is not reproduced here.

The values Xp and Xq are required to be at least 512 bits and each independently carries the

full entropy of any Information Card master key of up to 512 bits in length. The values Xp1,

Xp2, Xq1, and Xq2 have a length of only 100 to 121 bits and therefore will be shorter than the

Information Card master key and hence cannot each independently carry the full master

key entropy. The details of the X9.31 protocol, however, ensure that for reasonably sized

master keys, full entropy will be achieved in the generated asymmetric key pair.

8.4.1. Processing Rules

This key generation mechanism can be used to generate 1024 or 2048-bit RSA keys.

Notation: If H is an n-bit big-endian value, the convention H[1..p] denotes bits 1 through p

in the value of H where p ≤ n, and bit-1 is the rightmost (least significant) bit whereas bit-n

is the leftmost (most significant) bit in the value of H. Also, the convention X + Y denotes

the concatenation of the big-endian bit value of X followed by the big-endian bit value of Y.

Assume that the master key for the selected Information Card (see Section 7.1) is M and

the unique RP Identifier (derived as per Section 8.6.1) is T. The following processing rules

SHOULD be used to derive the inputs for the X9.31 key generation process.

1. Define 32-bit DWORD constants Cn as follows:

Cn = n, where n = 0,1,2,...,15

2. Compute SHA-1 hash values Hn as follows:

If the required key size = 1024 bits, compute

Hn = SHA1 (M + T + Cn) for n = 0,1,2,...,9

If the required key size = 2048 bits, compute

Hn = SHA1 (M + T + Cn) for n = 0,1,2,...,15

3. Extract the random input parameters for the X9.31 protocol as follows:

For all key sizes, compute

Xp1 [112-bits long] = H0[1..112]

Xp2 [112-bits long] = H1[1..112]

Xq1 [112-bits long] = H2[1..112]

Version 1.5 Page 49 of 60

Xq2 [112-bits long] = H3[1..112]

If the required key size = 1024 bits, compute

Xp [512-bits long] = H4[1..160] + H5[1..160] + H6[1..160] + H0[129..160]

Xq [512-bits long] = H7[1..160] + H8[1..160] + H9[1..160] + H1[129..160]

If the required key size = 2048 bits, compute

Xp [1024-bits long] = H4[1..160] + H5[1..160] + H6[1..160] + H0[129..160] +

 H10[1..160] + H11[1..160] + H12[1..160] + H2[129..160]

Xq [1024-bits long] = H7[1..160] + H8[1..160] + H9[1..160] + H1[129..160] +

 H13[1..160] + H14[1..160] + H15[1..160] + H3[129..160]

4. The X9.31 specification (Section 4.1.2) requires that the input values Xp1, Xp2, Xq1,

Xq2 MUST satisfy the following conditions.

 The large prime factors p1, p2, q1, and q2 are the first primes greater than

their respective random Xp1, Xp2, Xq1, Xq2 input values. They are randomly

selected from the set of prime numbers between 2100 and 2120, and each shall

pass at least 27 iterations of Miller-Rabin.

To ensure that the lower bound of 2100 is met, set the 101th bit of Xp1, Xp2, Xq1, Xq2

to „1‟ (i.e. Xp1[13th byte] |= 0x10, Xp2[13th byte] |= 0x10, Xq1[13th byte] |= 0x10,

Xq2[13th byte] |= 0x10).

5. The X9.31 specification (Section 4.1.2) requires that the input values Xp and Xq

MUST satisfy the following conditions.

 If the required key size = 1024 bits, then

Xp ≥ (√2)(2511) and Xq ≥ (√2)(2511)

 If the required key size = 2048 bits, then

Xp ≥ (√2)(21023) and Xq ≥ (√2)(21023)

To ensure this condition is met, set the two most significant bits of Xp and Xq to „1‟

(i.e. Xp[most significant byte] |= 0xC0, Xq[most significant byte] |= 0xC0).

6. Compute 1024 or 2048-bit keys as per the X9.31 protocol using {Xp1, Xp2, Xq1, Xq2,

Xp, Xq} as the random input parameters.

7. Use a 32-bit DWORD size public exponent value of 65537 for the generated RSA

keys.

There are three conditions as follows in the X9.31 specification which, if not met, require

that one or more of the input parameters must be regenerated.

 (Section 4.1.2 of X9.31) |Xp-Xq| ≥ 2412 (for 1024-bit keys) or |Xp-Xq| ≥ 2924 (for

2048-bit keys). If not true, Xq must be regenerated and q recomputed.

 (Section 4.1.2 of X9.31) |p-q| ≥ 2412 (for 1024-bit keys) or |p-q| ≥ 2924 (for 2048-

bit keys). If not true, Xq must be regenerated and q recomputed.

Version 1.5 Page 50 of 60

 (Section 4.1.3 of X9.31) d > 2512 (for 1024-bit keys) or d > 21024 (for 2048-bit

keys). If not true, Xq1, Xq2, and Xq must be regenerated and key generation process

repeated.

When it is necessary to regenerate an input parameter as necessitated by one or more of

the conditions above, it is essential that the regeneration of the input parameter be

deterministic to guarantee that all implementations of the key generation mechanism will

produce the same results. Furthermore, input regeneration is a potentially unlimited

process. In other words, it is possible that regeneration must be performed more than once.

In theory, one may need to regenerate input parameters many times before a key that

meets all of the requirements can be generated.

The following processing rules MUST be used for regenerating an input parameter X of

length n-bits when necessary:

a. Pad the input parameter X on the right, assuming a big-endian representation, with

m zero-bits where m is the smallest number which satisfies ((n+m) mod 128 = 0).

b. Encrypt the padded value with the AES-128 (Electronic Code Book mode) algorithm

using the 16-byte constant below as the encryption key:

Encryption Key

{ 0x8b, 0xe5, 0x61, 0xf5, 0xbc, 0x3e,

0x0c, 0x4e, 0x94, 0x0d, 0x0a, 0x6d,

0xdc, 0x21, 0x9d, 0xfd }

c. Use the leftmost n-bits of the result above as the required regenerated parameter.

If a regenerated parameter does not satisfy the necessary conditions, then repeat the 3-

step process above (call it RegenFunction) to generate the parameter again by using the

output of one iteration as input for the next iteration. In other words, if the output of the ith

iteration of the regeneration function above for an input parameter X is given by Xi then

Xi+1 = RegenFunction (Xi)

8.5. Claim Types

This section specifies a set of claim (attribute) types and the corresponding URIs that is

defined by this profile for some commonly used personal information. These claim types

may be used by a SIP, in self-issued tokens, or by other Identity Providers. Note that,

wherever possible, the claims included here reuse and refer to the attribute semantics

defined in other established industry standards that deal with personal information. A SIP

SHOULD support these claim types at a minimum. Other Identity Providers MAY also

support these claim types when appropriate. The URIs defined here MAY be used by a

Relying Party to specify required claims in its policy.

The base XML namespace URI that is used by the claim types defined here is as follows:

http://schemas.xmlsoap.org/ws/2005/05/identity/claims

For convenience, an XML Schema for the claim types defined here can be found at:

http://schemas.xmlsoap.org/ws/2005/05/identity/claims.xsd

8.5.1. First Name

URI: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname

Type: xs:string

Version 1.5 Page 51 of 60

Definition: (givenName in [RFC 2256]) Preferred name or first name of a Subject.

According to RFC 2256: “This attribute is used to hold the part of a person‟s name which is

not their surname nor middle name.”

8.5.2. Last Name

URI: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surname

Type: xs:string

Definition: (sn in [RFC 2256]) Surname or family name of a Subject. According to RFC

2256: “This is the X.500 surname attribute which contains the family name of a person.”

8.5.3. Email Address

URI: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress

Type: xs:string

Definition: (mail in inetOrgPerson) Preferred address for the “To:” field of email to be sent

to the Subject, usually of the form <user>@<domain>. According to inetOrgPerson using

[RFC 1274]: “This attribute type specifies an electronic mailbox attribute following the

syntax specified in RFC 822.”

8.5.4. Street Address

URI: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/streetaddress

Type: xs:string

Definition: (street in [RFC 2256]) Street address component of a Subject‟s address

information. According to RFC 2256: “This attribute contains the physical address of the

object to which the entry corresponds, such as an address for package delivery.” Its content

is arbitrary, but typically given as a PO Box number or apartment/house number followed

by a street name, e.g. 303 Mulberry St.

8.5.5. Locality Name or City

URI: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/locality

Type: xs:string

Definition: (l in [RFC 2256]) Locality component of a Subject‟s address information.

According to RFC 2256: “This attribute contains the name of a locality, such as a city,

county or other geographic region.” e.g. Redmond.

8.5.6. State or Province

URI: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/stateorprovince

Type: xs:string

Definition: (st in [RFC 2256]) Abbreviation for state or province name of a Subject‟s

address information. According to RFC 2256: “This attribute contains the full name of a

state or province. The values should be coordinated on a national level and if well-known

shortcuts exist - like the two-letter state abbreviations in the US – these abbreviations are

preferred over longer full names.” e.g. WA.

8.5.7. Postal Code

URI: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/postalcode

Version 1.5 Page 52 of 60

Type: xs:string

Definition: (postalCode in X.500) Postal code or zip code component of a Subject‟s

address information. According to X.500(2001): “The postal code attribute type specifies

the postal code of the named object. If this attribute value is present, it will be part of the

object‟s postal address - zip code in USA, postal code for other countries.”

8.5.8. Country

URI: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/country

Type: xs:string

Definition: (c in [RFC 2256]) Country of a Subject. According to RFC 2256: “This attribute

contains a two-letter ISO 3166 country code.”

8.5.9. Primary or Home Telephone Number

URI: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/homephone

Type: xs:string

Definition: (homePhone in inetOrgPerson) Primary or home telephone number of a

Subject. According to inetOrgPerson using [RFC 1274]: “This attribute type specifies a home

telephone number associated with a person.” Attribute values should follow the agreed

format for international telephone numbers, e.g. +44 71 123 4567.

8.5.10. Secondary or Work Telephone Number

URI: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/otherphone

Type: xs:string

Definition: (telephoneNumber in X.500 Person) Secondary or work telephone number of a

Subject. According to X.500(2001): “This attribute type specifies an office/campus

telephone number associated with a person.” Attribute values should follow the agreed

format for international telephone numbers, e.g. +44 71 123 4567.

8.5.11. Mobile Telephone Number

URI: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/mobilephone

Type: xs:string

Definition: (mobile in inetOrgPerson) Mobile telephone number of a Subject. According to

inetOrgPerson using [RFC 1274]: “This attribute type specifies a mobile telephone number

associated with a person.” Attribute values should follow the agreed format for international

telephone numbers, e.g. +44 71 123 4567.

8.5.12. Date of Birth

URI: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/dateofbirth

Type: xs:date

Definition: The date of birth of a Subject in a form allowed by the xs:date data type.

8.5.13. Gender

URI: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/gender

Type: xs:token

Version 1.5 Page 53 of 60

Definition: Gender of a Subject that can have any of these exact string values – „0‟

(meaning unspecified), „1‟ (meaning Male) or „2‟ (meaning Female). Using these values

allows them to be language neutral.

8.5.14. Private Personal Identifier

URI: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/privatepersonalidentifier

Type: xs:base64binary

Definition: A private personal identifier (PPID) that identifies the Subject to a Relying

Party. The word “private” is used in the sense that the Subject identifier is specific to a

given Relying Party and hence private to that Relying Party. A Subject‟s PPID at one Relying

Party cannot be correlated with the Subject‟s PPID at another Relying Party. Typically, the

PPID should be generated by an Identity Provider as a pair-wise pseudonym for a Subject

for a given Relying Party. For a self-issued Information Card, the Self-issued Identity

Provider in an Identity Selector system should generate a PPID for each Relying Party as a

function of the card identifier and the Relying Party‟s identity. The processing rules and

encoding of the PPID claim value is specified in Section 8.6.

8.5.15. Web Page

URI: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/webpage

Type: xs:string

Definition: The Web page of a Subject expressed as a URL.

8.6. The PPID Claim

The PPID claim for a Subject user represents a unique identifier for that user at a given

Relying Party that is different from all identifiers for that user at any other Relying Party. In

other words, the PPID is a pair-wise unique identifier for a given user identity and Relying

Party combination. Since an Information Card represents a specific user identity and a

Relying Party is the organization behind a Web service or site that the user interacts with,

the PPID claim is logically a function of an Information Card and the organizational identity

of the Relying Party.

This section describes the processing rules that SHOULD be used by a SIP to derive a PPID

claim value for a combination of an Information Card and a Relying Party where it is used.

8.6.1. Relying Party Identifier and Relying Party PPID Seed

In order to derive the PPID and Signing Key as functions of the RP‟s organizational identity,

a stable and unique identifier for the RP, called the RP Identifier, is needed. In the

Information Card Model, the identity of a Relying Party (RP) possessing an X.509v3

certificate is presented in the form of that certificate. Therefore the organizational identity of

the RP is obtained by applying a series of transformations to the identity information carried

in the X.509 certificate. (See Section 9 for the specification of how to compute these values

for Relying Parties not possessing a certificate.)

As specified in [RFC 2459], the subject field inside an X.509 certificate identifies the entity

associated with the public key stored in the subject public key field. Where it is non-empty,

the subject field MUST contain an X.500 distinguished name (DN). The DN MUST be unique

for each subject entity certified by the one CA as defined by the issuer name field.

The subject field contains a DN of the form shown below:

CN=string, [OU=string, ...,] O=string, L=string, S=string, C=string

Version 1.5 Page 54 of 60

For an end-entity certificate, the values of the attribute types O (organizationName), L

(localityName), S (stateOrProvinceName) and C (countryName) together uniquely identify

the organization to which the end-entity identified by the certificate belongs. These attribute

types are collectively referred to as the organizational identifier attributes here. The RP

Identifier is constructed using these organizational identifier attributes as described below.

The RP Identifier value is used as an input to the Signing Key computation. A closely

related value called the Relying Party PPID Seed is also computed, which is used as an input

to the PPID claim and Client Pseudonym PPID computations. In many cases these are the

same but in one case they differ.

There are four cases of how the RP Identifier and RP PPID Seed are constructed depending

on which organizational identifier attributes the RP‟s certificate contains, if it is an extended

validation (EV) certificate [EV Cert] with respect to the organizational identifier attributes,

and if it chains to a trusted root certificate.

Case 1: RP’s certificate is EV for organizational identifier attributes and chains to a

trusted root certificate authority

 Convert the organizational identifier attributes in the end-entity certificate into a

string, call it OrgIdString, of the following form:

|O="string"|L="string"|S="string"|C="string"|

The vertical bar character (ASCII 0x7C) is used as a delimiter at the start and end of

the string as well as between the attribute types. Further, the string values of the

individual attribute types are enclosed within double quote characters (ASCII 0x22).

If an attribute type is absent in the subject field of the end-entity certificate, then

the corresponding string value is the empty string (""). Following is an example

OrgIdString per this convention.

|O="Microsoft"|L="Redmond"|S="Washington"|C="US"|

 Encode all the characters in OrgIdString into a sequence of bytes, call it OrgIdBytes,

using Unicode encoding (UTF-16LE with no byte order mark).

 Hash OrgIdBytes using the SHA256 hash function, and use the resulting value as the

RP Identifier and RP PPID Seed.

RP PPID Seed = RP Identifier = SHA256 (OrgIdBytes)

Case 2: RP’s certificate is not EV for organizational identifier attributes, has a non-

empty Organization (O) value, and chains to a trusted root certificate authority

 Convert the organizational identifier attributes in the end-entity certificate into a

string, call it OrgIdString, in the same manner as employed for Case 1 above.

 Let QualifierString be the string:

|Non-EV

 Let QualifiedOrgIdString be the concatenation of QualifierString and OrgIdString.

QualifiedOrgIdString = QualifierString + OrgIdString

 Encode all the characters in QualifiedOrgIdString into a sequence of bytes, call it

QualifiedOrgIdBytes, using Unicode encoding (UTF-16LE with no byte order mark).

 Hash QualifiedOrgIdBytes using the SHA256 hash function, and use the resulting

value as the RP Identifier.

RP Identifier = SHA256 (QualifiedOrgIdBytes)

Version 1.5 Page 55 of 60

 Encode all the characters in OrgIdString into a sequence of bytes, call it OrgIdBytes,

using Unicode encoding (UTF-16LE with no byte order mark).

 Hash OrgIdBytes using the SHA256 hash function, and use the resulting value as the

Relying Party PPID Seed.

RP PPID Seed = SHA256 (OrgIdBytes)

Case 3: RP’s certificate has an empty or no Organization (O) value and has an

empty or no Common Name (CN) or does not chain to a trusted root certificate

authority

 Take the subject public key in the end-entity certificate, call it PublicKey, as a byte

array.

 Hash PublicKey using the SHA256 hash function, and use the resulting value as the

RP Identifier.

RP PPID Seed = RP Identifier = SHA256 (PublicKey)

Case 4: RP’s certificate has an empty or no Organization (O) value but has a non-

empty Common Name (CN) value and chains to a trusted root certificate authority

 Convert the Common Name attribute value in the end-entity certificate into a string,

call it CnIdString, of the following form:

|CN="string"|

Following is an example CnIdString per this convention:

|CN="login.live.com"|

 Encode all the characters in CnIdString into a sequence of bytes, call it CnIdBytes,

using Unicode encoding (UTF-16LE with no byte order mark).

 Hash CnIdBytes using the SHA256 hash function, and use the resulting value as the

RP Identifier and RP PPID Seed.

RP PPID Seed = RP Identifier = SHA256 (CnIdBytes)

8.6.2. PPID

The PPID value SHOULD be produced as follows using the card identifier and the RP PPID

Seed (specified in Section 8.6.1):

 Encode the value of the ic:CardId element of the Information Card into a sequence

of bytes, call it CardIdBytes, using Unicode encoding.

 Hash CardIdBytes using the SHA256 hash function to obtain the canonical card

identifier CanonicalCardId.

CanonicalCardId = SHA256 (CardIdBytes)

 Hash the concatenation of RP PPID Seed and CanonicalCardId using the SHA256

hash function to obtain the PPID.

PPID = SHA256 (RP PPID Seed + CanonicalCardId)

8.6.3. Friendly Identifier

The PPID provides an RP-specific identifier for a Subject that is suitable for programmatic

processing, but is not a user-friendly identifier. The simple transformation rules specified in

this section MAY be used by a SIP, or any other Identity Provider supporting the PPID claim,

Version 1.5 Page 56 of 60

to create a friendly identifier for use within a Display Token accompanying a Security Token

carrying the PPID claim.

The Friendly Identifier has the following characteristics:

 It is encoded as a 10-character alphanumeric string of the form “AAA-AAAA-AAA”

grouped into three groups separated by the „hyphen‟ character (e.g., the string

“6QR-97A4-WR5”). Note that the hyphens are used for punctuation only.

 The encoding alphabet does NOT use the numbers „0‟ and „1‟, and the letters „O‟ and

„I‟ to avoid confusion stemming from the similar glyphs used for these numbers and

characters. This leaves 8 digits and 24 letters – a total of 32 alphanumeric symbols –

as the alphabet for the encoding.

The processing rules used for deriving a Friendly Identifier from a PPID are as follows:

 The PPID value is conveyed as a base64 encoded string inside tokens. Start with the

base64 decoded PPID value as input.

 Hash the PPID value using the SHA1 hash function to obtain a hashed identifier.

HashId = SHA1 (PPID)

 Let the Friendly Identifier be the string “A0 A1 A2– A3 A4 A5 A6– A7 A8 A9” where each

Ai is an alphanumeric character from the encoding alphabet described above.

 For i := 0 to 9, each Ai is determined as below:

o Take the ith octet of HashId (denoted as HashId[i])

o Find RawValue = HashId[i] % 32 (where % is the remainder operation)

o Ai = EncodedSymbol obtained by mapping RawValue to EncodedSymbol using

the table below

Raw

Value
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Encoded

Symbol
Q L 2 3 4 5 6 7 8 9 A B C D E F

Raw

Value
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Encoded

Symbol
G H J K M N P R S T U V W X Y Z

9. Relying Parties without Certificates

While Relying Parties are typically identified by presenting a cryptographically protected

identity, such as an X.509v3 certificate, the Information Card Model is also applicable in

situations in which no Relying Party certificate is available. This section specifies how

Information Cards are used at Relying Parties with no certificate: specifically, Web sites

using the [HTTP] scheme. Also see ic07:RequireStrongRecipientIdentity in Section

Version 1.5 Page 57 of 60

4.1.1.7 for a means whereby card issuers can prohibit the use of cards at Relying Parties

not identified by a certificate.

9.1. Relying Party Identifier and Relying Party PPID Seed

The Relying Party Identifier and Relying Party PPID Seed values for Relying Parties without

certificates are computed in this manner:

 Set the string OrgIdString to be the fully qualified DNS host name in lowercase

characters specified in the URI of the Relying Party, or if a numeric IP address was

used, then the canonical string representation of the IP address of the server.

 Encode all the characters in OrgIdString into a sequence of bytes, call it OrgIdBytes,

using the Unicode encoding UTF-16LE with no byte order mark.

 Hash OrgIdBytes using the SHA256 hash function, and use the resulting value as

both the RP Identifier and the RP PPID Seed.

The RP Identifier and RP PPID Seed are then used in the same manner as for Relying Parties

identified by certificates when computing PPID claim and Client Pseudonym PPID values.

9.2. AppliesTo Information

Under the circumstances described in Section 4.3.3 that the RP endpoint to which the token

will be sent is supplied as the wsp:AppliesTo value to the IP, when the RP possesses no

certificate, the URL of the RP is supplied as that wsp:AppliesTo value.

Example:

<wst:RequestSecurityToken>

 <wsp:AppliesTo>

 <wsa:EndpointReference>

 <wsa:Address>http://login.contoso.com</wsa:Address>

 </wsa:EndpointReference>

 </wsp:AppliesTo>

 ...

</wst:RequestSecurityToken>

9.3. Token Signing and Encryption

When the Relying Party is not identified by a certificate, tokens sent from the Self-issued

Identity Provider are not encrypted, although they are still signed in the manner described

in Section 8.2. Tokens generated by Identity Providers for Relying Parties not identified by

a certificate are also typically not encrypted, as no encryption key is available. However,

the token may still be encrypted if the Identity Provider has a pre-existing relationship with

the Relying Party and they have mutually agreed on the use of a known encryption key.

The token should still typically be signed, even when not encrypted.

10. Using WS-SecurityPolicy 1.2 and WS-Trust 1.3

Software implementing the Information Card Model SHOULD utilize the OASIS standard

versions of WS-SecurityPolicy and WS-Trust – [WS-SecurityPolicy 1.2] and [WS-Trust 1.3]

and MAY utilize the previous draft versions – [WS-SecurityPolicy 1.1] and [WS-Trust 1.2].

This section describes the differences between the old and standard versions of these

protocols that may affect software implementing the Information Card Model.

Version 1.5 Page 58 of 60

10.1. Overview of Differences

The following changes between the protocol versions affect software implementing this

specification:

 Namespace changes:

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702 replaces

http://schemas.xmlsoap.org/ws/2005/07/securitypolicy.

http://docs.oasis-open.org/ws-sx/ws-trust/200512 replaces

http://schemas.xmlsoap.org/ws/2005/02/trust.

 Use of RequestSecurityTokenResponseCollection: A

wst:RequestSecurityTokenResponseCollection element encloses the

wst:RequestSecurityTokenResponse when WS-Trust 1.3 is used.

 Use of SecondaryParameters: An Identity Selector sends some information

received from the Relying Party to the Identity Provider in a

wst:SecondaryParameters element.

 Bearer Token Request Syntax: The new wst:KeyType value http://docs.oasis-

open.org/ws-sx/wstrust/200512/Bearer is used to request a bearer token.

10.2. Identity Selector Differences

Identity Selectors MUST determine the WS-Trust versions used by Identity Provider STSs

and Relying Party STSs using their Security Policy.

Identity Selectors supporting WS-Trust 1.3 MUST understand the new WS-Trust 1.3

elements and syntax such as wst13:RequestSecurityTokenResponseCollection and new

URIs such as http://docs.oasis-open.org/ws-sx/wstrust/200512/Bearer. They MUST also

understand that typical properties of an RST like Claims and KeyType may be either a direct

child of the top level wst13:RequestSecurityToken element or contained within a

wst13:SecondaryParameters element in the RST.

When constructing an RST for an Identity Provider using WS-Trust 1.3, the Identity Selector

SHOULD send parameters received from the Relying Party in a

wst13:SecondaryParameters element within the wst13:RequestSecurityToken, with these

exceptions:

 The user chooses not to send optional claims. In this scenario, no

SecondaryParameters element is sent in order to hide this user decision.

 No wsp:AppliesTo is being sent in the RST. In this scenario, no

wst13:SecondaryParameters element is sent so that the Identity Provider does not

obtain any identifying information about the Relying Party.

Example:

<wst13:RequestSecurityToken Context="ProcessRequestSecurityToken">

 <wst13:RequestType>http://docs.oasis-open.org/ws-sx/ws-

trust/200512/Issue</wst13:RequestType>

 <wsid:InformationCardReference

xmlns:wsid="http://schemas.xmlsoap.org/ws/2005/05/identity">

 ...

 </wsid:InformationCardReference>

 <wst13:Claims Dialect="http://schemas.xmlsoap.org/ws/2005/05/identity">

 ...

 </wst13:Claims>

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702
http://schemas.xmlsoap.org/ws/2005/07/securitypolicy
http://docs.oasis-open.org/ws-sx/ws-trust/200512
http://schemas.xmlsoap.org/ws/2005/02/trust
http://docs.oasis-open.org/ws-sx/wstrust/200512/Bearer
http://docs.oasis-open.org/ws-sx/wstrust/200512/Bearer
http://docs.oasis-open.org/ws-sx/wstrust/200512/Bearer

Version 1.5 Page 59 of 60

 <wst13:KeyType>http://docs.oasis-open.org/ws-sx/ws-

trust/200512/SymmetricKey</wst13:KeyType>

 <wst13:SecondaryParameters>

 <wst13:RequestType>http://docs.oasis-open.org/ws-sx/ws-

trust/200512/Issue</wst13:RequestType>

 <wst13:TokenType>urn:oasis:names:tc:SAML:1.0:assertion</wst13:TokenType>

 <wst13:KeyType>http://docs.oasis-open.org/ws-sx/ws-

trust/200512/SymmetricKey</wst13:KeyType>

 <wst13:KeyWrapAlgorithm>http://www.w3.org/2001/04/xmlenc#rsa-oaep-

mgf1p</wst13:KeyWrapAlgorithm>

 ...

 </wst13:SecondaryParameters>

</wst13:RequestSecurityToken>

The wst13:RequestSecurityTokenResponse constructed must be enclosed within a

wst13:RequestSecurityTokenResponseCollection element.

Example:

<wst13:RequestSecurityTokenResponseCollection>

 <wst13:RequestSecurityTokenResponse>

 <wst13:TokenType>urn:oasis:names:tc:SAML:1.0:assertion</wst13:TokenType>

 <wst13:RequestedSecurityToken> ... </wst13:RequestedSecurityToken>

 ...

 </wst13:RequestSecurityTokenResponse>

</wst13:RequestSecurityTokenResponseCollection>

10.3. Security Token Service Differences

To utilize WS-Trust 1.3, an Identity Provider STS and Relying Party STSs MUST express

their Security Policy using WS-SecurityPolicy 1.2.

STSs using WS-Trust 1.3 MUST understand the new WS-Trust 1.3 elements and syntax such

as wst13:RequestSecurityTokenResponseCollection and new URIs such as

http://docs.oasis-open.org/ws-sx/wstrust/200512/Bearer. They MUST also understand that

typical properties of an RST like Claims and KeyType may be either a direct child of the top

level wst13:RequestSecurityToken element or contained within a

wst13:SecondaryParameters element in the RST.

11. References

[EV Cert]

CA / Browser Forum, “Guidelines for the Issuance and Management of Extended

Validation Certificates, Version 1.1”, April 2008.

[HTTP]

R. Fielding et al., “IETF RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1”, June 1999.

[HTTPS]

E. Rescorla, “RFC 2818: HTTP over TLS”, May 2000.

[RFC 1274]

P. Barker and S. Kille, “RFC 1274: The COSINE and Internet X.500 Schema”, November

1991.

[RFC 2119]

S. Bradner, “RFC 2119: Key words for use in RFCs to Indicate Requirement Levels”,

March 1997.

http://docs.oasis-open.org/ws-sx/wstrust/200512/Bearer
http://cabforum.org/EV_Certificate_Guidelines_V11.pdf
http://cabforum.org/EV_Certificate_Guidelines_V11.pdf
http://cabforum.org/EV_Certificate_Guidelines_V11.pdf
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc1274.txt
http://www.ietf.org/rfc/rfc2119.txt

Version 1.5 Page 60 of 60

[RFC 2256]

M. Wahl, “RFC 2256: A Summary of the X.500(96) User Schema for use with LDAPv3”,

December 1997.

[RFC 2459]

R. Housley, W. Ford, W. Polk, and D. Solo, “RFC 2459: Internet X.509 Public Key

Infrastructure - Certificate and CRL Profile”, January 1999.

[RFC 2898]

B. Kaliski, “PKCS #5: Password-Based Cryptography Specification, Version 2.0”,

September 2000.

[RFC 3066]

H. Alvestrand, “Tags for the Identification of Languages”, January 2001.

[SOAP 1.2]

M. Gudgin, et al., “SOAP Version 1.2 Part 1: Messaging Framework”, June 2003.

[WS-Addressing]

M. Gudgin et al., “Web Services Addressing 1.0 – Core”, August 2005.

[Addressing-Ext]

J. Alexander et al., “Application Note: Web Services Addressing Endpoint References and

Identity”, July 2008.

[WS-MetadataExchange]

“Web Services Metadata Exchange (WS-MetadataExchange), Version 1.1”, August 2006.

[WS-Security]

A. Natalin et al., “Web Services Security: SOAP Message Security 1.0”, May 2004.

[WS-Policy]

“Web Services Policy Framework (WS-Policy), Version 1.2”, March 2006.

[WS-SecurityPolicy 1.1]

“Web Services Security Policy Language (WS-SecurityPolicy), Version 1.1”, July 2005.

[WS-SecurityPolicy 1.2]

OASIS, “WS-SecurityPolicy 1.2”, July 2007.

[WS-Trust 1.2]

“Web Services Trust Language (WS-Trust)”, February 2005.

[WS-Trust 1.3]

OASIS, “WS-Trust 1.3”, March 2007.

[XMLDSIG]

Eastlake III, D., Reagle, J., and Solo, D., “XML-Signature Syntax and Processing”, March

2002.

[XMLENC]

Imamura, T., Dillaway, B., and Simon, E., “XML Encryption Syntax and Processing”,

August 2002.

[XML Schema, Part 1]

H. Thompson et al., “XML Schema Part 1: Structures”, May 2001.

[XML Schema, Part 2]

P. Biron et al., “XML Schema Part 2: Datatypes”, May 2001.

http://www.ietf.org/rfc/rfc2256.txt
http://www.ietf.org/rfc/rfc2459.txt
http://www.ietf.org/rfc/rfc2459.txt
http://www.ietf.org/rfc/rfc2459.txt
http://www.ietf.org/rfc/rfc2898.txt
http://www.faqs.org/rfcs/rfc3066.html
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/2005/CR-ws-addr-core-20050817/
http://schemas.xmlsoap.org/ws/2006/02/addressingidentity
http://schemas.xmlsoap.org/ws/2006/02/addressingidentity
http://schemas.xmlsoap.org/ws/2006/02/addressingidentity
http://specs.xmlsoap.org/ws/2004/09/mex/WS-MetadataExchange.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://specs.xmlsoap.org/ws/2004/09/policy/ws-policy.pdf
http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.pdf
http://specs.xmlsoap.org/ws/2005/02/trust/WS-Trust.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://www.ietf.org/rfc/rfc3275.txt
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/

